

1

Potential for Large Scale Integration of Wind Power in Southeast Europe

Energy Technology and Governance Program (ETAG)

United State Agency for International Development United States Energy Association

> William L. Polen Senior Director United States Energy Association

ETAG Objectives

Plan for robust, reliable cross border transmission interconnections as the backbone infrastructure for cross border trade and exchange of electricity generated by clean & innovative energy technologies

Develop technical rules, guidelines and network infrastructure assessments to accelerate integration of clean & innovative energy technologies

Improve security of supply in distribution systems by supporting: optimization planning; line loss reduction; asset management programs; smart grid technology; and region wide disaster preparedness and emergency response programs

Support utility commercialization, privatization and market transformation to improve overall network efficiency and support clean energy market development

Delivery Mechanisms Support ETAG Objectives

Southeast Europe Cooperation Initiative (SECI) Transmission Planning Project Black Sea Regional Transmission Planning Project (BSTP)

Regional DISCO Security of Supply Working Group Utility Commercialization Privatization & Market Transformation Partnerships with US utilities

13th ERRA Energy Investment and Regulation Conference, 27-28 October 2014, Baku, Azerbaijan

Project Goals: SECI & BSTP

Promote National & Regional Transmission Planning Among TSOs

Harmonize Transmission Planning Principles, Methods and Methodologies

Identify Priority Investments in Transmission Systems & Interconnections

SECI & BSTP Project Development

BSTP Project Participants

- Armenia Scientific Energy Research Institute
- Armenia Electric Power System Operator
- Bulgaria NEK EAD, National Electricity Company
- Georgia Georgian State Electrosystem (GSE)
- Moldova Moldelectrica
- Romania Transelectrica
- Turkey Turkish Electricity Transmission Company
- Ukraine Ukrenergo

SECI Project Participants

- Albania Transmission System and Market Operator (OST)
- Bosnia and Herzegovina Independent System Operator in BiH (NOS BiH)
- Bosnia and Herzegovina Electricity Transmission Company of BiH
- Bulgaria NEK EAD, National Electricity Company
- Croatia Croatian Transmission System Operator LLC (HOPS)
- Kosovo Transmission System and Market Operator (KOSTT)
- Macedonia Macedonia Transmission System Operator (MEPSO)
- Montenegro Montenegrin Transmission System Operator (CGES)
- Romania Transelectrica
- Serbia JP Elektromreza Srbjie (EMS)
- Turkey Turkish Electricity Transmission Company (TEIAS)
- Italy TERNA (observer)
- Slovenia Elektro Slovenia (ELES) (observer)

SECI & BSTP Accomplishments

> 200 Participants Trained in the application of PSS/E, financial analysis, electricity market operations

Sustainable Expert Working Groups & Centers of Excellence

> \$1 billion worth of transmission investments leveraged through the use of SECI & BSTP models for new internal & interconnection lines

AGT Power Bridge & Montenegro – Italy Interconnection

Models & forecasts have proven accuracy & are most detailed available in the E&E

Internal Congestion & Reliability Issues Limit Integration of Clean Energy

Almost All Regional System Operators & Developers Use SECI Models for Project Development

SECI: Preparation for Large Scale Wind Integration in Southeast European Power System

- Ambitious Renewable Energy Supply (RES) Targets in SEE, especially wind generation
- Study Reviewed RES: Targets, Existing Wind Studies, Legal/Regulatory Framework, Technical Standards for each SECI Country
- Conducted Regional Network Load Flow Analysis Assuming Large Scale Penetration of Wind Generation and identification of potential network bottlenecks

Planned WPP Installed Capacity by 2020

Pinst(WPPs in 2020) = 17 068 MW

12

WPPs in 2010 and 2020

Pinst(WPPs in 2020) = 17 068 MW

13

Limits for large scale WPP integration

13th ERRA Energy Investment and Regulation Conference, 27-28 October 2014, Baku, Azerbaijan

14

Experience with WPP Variability in 2011 for CRO, BG, ROM

Regional approach for just 3 countries would result with significant decrease (15-35%) of system reserve needed for WPP balancing

Total SEE WPPs Variations in 2020

Regional approach for all regional countries would result with significant decrease (>50%) of system reserve needed for WPP balancing

Regional Approach Benefit

Comparing these regional variations to the country variations, we get clear benefit of the regional approach of WPP integration:

Regional approach would decrease system reserve needs for balancing WPPs to less than half of the existing individual country approach.

Regional approach would decrease total reserve needed by -2600 MWh/h and +2000 MWh/h and release it for market activities. 17

