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Smart data – from Descriptive to Prescriptive Analytics
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Predictive Analytics for Decision Support in Energy Engineering
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Siemens Digital Services Powered by AI –

Example: Optimization of Gas Turbine Operations
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A Coal-Fired Plant Use Case:

Gas Concentration Reconstruction for Coal-Fired Boilers Using Gaussian 

Process

➢ Combustion optimization of a coal-fired boiler: improve its operating efficiency while reducing emissions

➢ Take measurements for key combustion ingredients, such as O2, CO, H2O for the feedback. 

➢ Use Tunable Diode Laser Absorption Spectroscopy (TDLAS) to measure the average value of gas concentration along a 

laser beam path to reconstruct gas concentration images based on these path averages. 

➢ Number of paths is usually very limited, leading to an extremely under-constrained estimation problem.

➢ How to arrange paths such that the reconstructed image is more accurate

➢ Bayesian approach based on Gaussian process (GP) to address both image reconstruction and path arrangement problems

➢ GP posterior mean as the reconstructed image, and average posterior pixel variance as objective function to optimize the 

path arrangement. 

➢ Algorithms implemented in Siemens SPPA-P3000 control system for real-time combustion optimization of boilers

Reconstructed results vs the ground truth with different number of paths.
Gas concentration reconstruction. The 

left plot shows the geometry of an 

operating coal-fired boiler. 2D cross 

section gas concentration images (bottom 

right). TDLAS paths are installed on the 

wall of a boiler. Each path reads the 

average value along the path (top right)

Comparing optimized path arrangement with 

best random path arrangement
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