

Predictive Analytics in Power Plants

Dr. Arindam Dasgupta & Dr. Amit Chakraborty Siemens Corporate Technology, Princeton, NJ

Smart data – from Descriptive to Prescriptive Analytics

Predictive Analytics for Decision Support in Energy Engineering

Physics Data Data Analytics Business Business Innovation

Data

Structured

Sensors Schedules Transactions Configurations

..

Unstructured Multistructured

Logs Reports Specifications

Image

Technologies

Data presentation

Visual analytics, dashboards, reports

Data modeling and analysis

Optimization

Reasoning / Semantics

Natural Language Processing / Search

Data Mining / Machine Learning (incl. Neural Networks)

Data management

Data warehouse, NoSQL(inc. Hadoop), Stream processors (parts of Lambda Architecture)

Data integration

Physical-, Virtual-, Semantic-, integration, ETL, Quality-, Metadata- management

Applications

Prescriptive analytics

Customer Value

Operation planning, Operation and control optimization, Product configuration

Predictive analytics

Fault-, Production-, Demand- prediction, Price forecasting

Diagnostic analytics

Monitoring, Alarm management, Root cause analysis, Diagnostic advice

Descriptive analytics

Performance and cost reports, Fault reports, Operation dashboards

Siemens Digital Services Powered by AI – Example: Optimization of Gas Turbine Operations

Energy System

- Market drivers
- Customer needs
- Product cycles

Gas Turbines

- Mechanical Engineering
- Thermodynamics
- Combustion chemistry
- Sensor properties

Autonomous Learning

- Neural Networks
- Smart Data Architecture processes data from 5,000 sensors per second

Results

Reduced NOx Emissions

Extension of service intervals

Improved Performance

. . .

Domain know-how

Context know-how

Analytics know-how

Customer value

Siemens

A Coal-Fired Plant Use Case: Gas Concentration Reconstruction for Coal-Fired Boilers Using Gaussian Process

Gas concentration reconstruction. The left plot shows the geometry of an operating coal-fired boiler. 2D cross section gas concentration images (bottom right). TDLAS paths are installed on the wall of a boiler. Each path reads the average value along the path (top right)

Ref:

Yuan, C. et al, KDD '15 Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages 2247-2256

0.2

Optimized+TR
Optimized+TR
Optimized+GP

0.18

0.16

0.14

0.12

0.1

Comparing optimized path arrangement with best random path arrangement

- > Combustion optimization of a coal-fired boiler: improve its operating efficiency while reducing emissions
- Take measurements for key combustion ingredients, such as O2, CO, H2O for the feedback.
- ➤ Use Tunable Diode Laser Absorption Spectroscopy (TDLAS) to measure the average value of gas concentration along a laser beam path to reconstruct gas concentration images based on these path averages.
- ➤ Number of paths is usually very limited, leading to an extremely under-constrained estimation problem.
- > How to arrange paths such that the reconstructed image is more accurate
- > Bayesian approach based on Gaussian process (GP) to address both image reconstruction and path arrangement problems
- > GP posterior mean as the reconstructed image, and average posterior pixel variance as objective function to optimize the path arrangement.
- > Algorithms implemented in **Siemens SPPA-P3000** control system for real-time combustion optimization of boilers