What Makes a Material Critical? What Makes a Supply Chain Resilient?

Rod Eggert July 14, 2022 DOE Critical Materials Workshop Golden, Colorado

Critical Materials Institute

Critical

Vital Essential Indispensable

Source: lexico.com

Most of the 1st 83 elements in the periodic table are vital to someone

H																	He
3 Li Linium	4 Be Beryllum											S B Baron	6 C Catton	7 N Nitrogen	8 O Choygen	9 F Ruotine	10 Ne Nion
n Na Sodum	12 Mg Magnesium											13 Al Aluminum	M Si Silcon	15 P Phosphorus	16 S sutter	17 Cl Chlorine	18 Ar Argon
19 K Potassium	20 Ca Calcium	21 SC Scandium	22 Ti Titanium	22 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zes	31 Ga callum	32 Ge Germanium	33 As Anumic	34 Se selenium	35 Br Bromine	36 Kr Kryston
37 Rb Robietum	38 Sr Strontium	39 Y Vitrium	40 Zr Zirconium	41 Nb Nobum	42 Mo Molytsdenum	43 TC Technetium	44 Ru Puthenium	45 Rh Rhodum	46 Pd Pelladium	47 Ag sitter	48 Cd Cadmium	49 In Indium	50 Sn 16	51 Sb Antimony	52 Te teturium	55 todine	S4 Xe xmon
55 CS Caestore	56 Ba Barlum	57 - 71 La-Lu	72 Hf Hatsium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Midum	78 Pt Platinum	79 Au cold	80 Hg Mercury	81 TI Thaitum	82 Pb Lead	83 Bi Bismuth	84 Po Poterium	85 At Astative	86 Rn Redon
87 Fr Francium	88 Ra Radium	89 - 103 Ac-Lr	104 Rf Rutherfordiu	105 Db Dubmum	106 Sg Seaborgium	107 Bh Bhorium	108 HS Hassium	109 Mt Heitnerium	110 DS Derroitatio	111 Rg Roentgenium	112 Cn Copernicium	113 Nh Nhonium	114 Fl Plerovlum	115 Mc Mascavium	116 LV Livermonium	117 Ts Terrestre	118 Og Oganisson

Source: mineralseducationcoalition.org

A narrower definition

Essential functionality (i.e., indispensable) Difficult substitution Supply-chain risks

US list 2022 – not much of a narrowing!

- Gallium
- Niobium
- Cobalt
- Neodymium
- Ruthenium
- Rhodium •
- Dysprosium
- Aluminum
- Fluorspar
- Platinum
- Iridium

- um
- Cerium
 - Lanthanum
- Bismuth
- Yttrium
- Antimony
- Tantalum
- Hafnium
- Tungsten
- Vanadium
- Tin

- Germanium
 Lithium
- Palladium Tellurium
- Titanium
- Zinc
- Graphite
- Chromium
- Arsenic
- Erbium Barite
- Europium • Indium
- Samarium Gadolinium

Nickel

Beryllium

Zirconium

Cesium

Note: In rank order from top to bottom and then left to right; elements starting with cesium were not rank ordered.

Source: Nassar and Fortier 2021 (USGS Open-File Report 2021-1045)

- Praseodymi
 Magnesium
 Manganese
 Holmium
 - Lutetium
 - Rubidium
 - Scandium
 - Terbium
 - Thulium
 - Ytterbium

5

"What is 'critical' depends on who you are, where you are, and when you ask"

- Alex King

World, national, company, technology Something important is at risk

Each material has its own story

Lack of supply chain diversity Geopolitical risks Co-production risks and opportunities Technology risks Entry barriers Opaque markets Etc.

The time dimension often is ignored

Short- to medium-term risks v. Medium- to long-term availability

Short- to medium-term risks

Fragility due to: Existing geography of production & use Existing technologies

Specific risks:

Physical availability Price volatility Reputation

Medium- to long-term availability

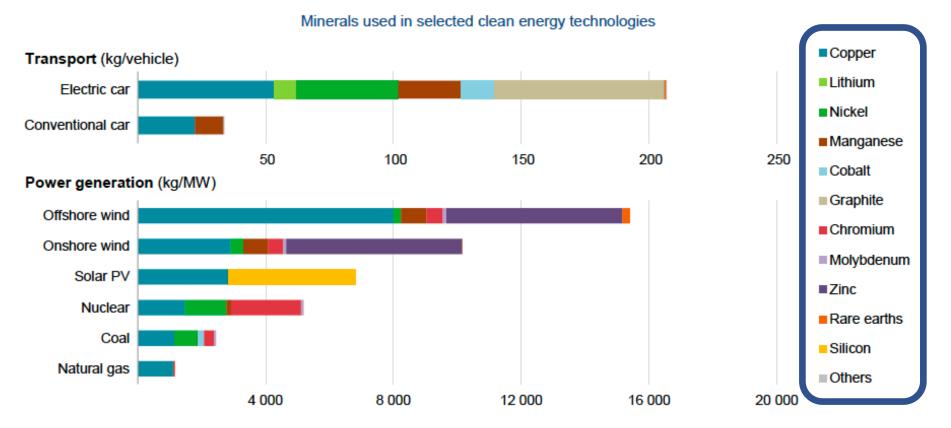
• Demand

- Will increase quickly and substantially for some materials, although at what rate and by how much is uncertain
- Supply
 - Is characterized by supply chains that often are fragmented, concentrated (insecure), small, opaque
 - May not grow 'appropriately' to meet growing demands (sufficiently, securely, affordably, sustainably, responsibly)
- The Fear
 - Lack of appropriate availability will become an obstacle to clean energy transitions

Financial Times, May 5, 2021

Commodifies (+ Add to myFT

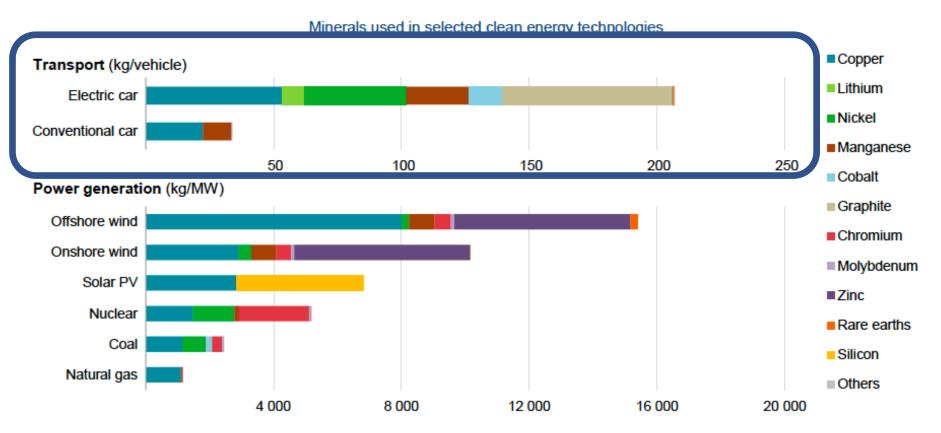
High metal prices could delay transition to clean energy, warns IEA


Paris agreement climate goals to 'turbocharge' demand for minerals amid lack of investment in mining

Prices for commodities — from lithium to cobalt — have rallied as demand for clean energy technologies has increased and governments have rolled out green stimulus packages © REUTERS

Source: https://www.ft.com/content/2f709342-3070-4b75-8924-3d9190f5c0c7

Demand for some mineral-based materials will increase significantly

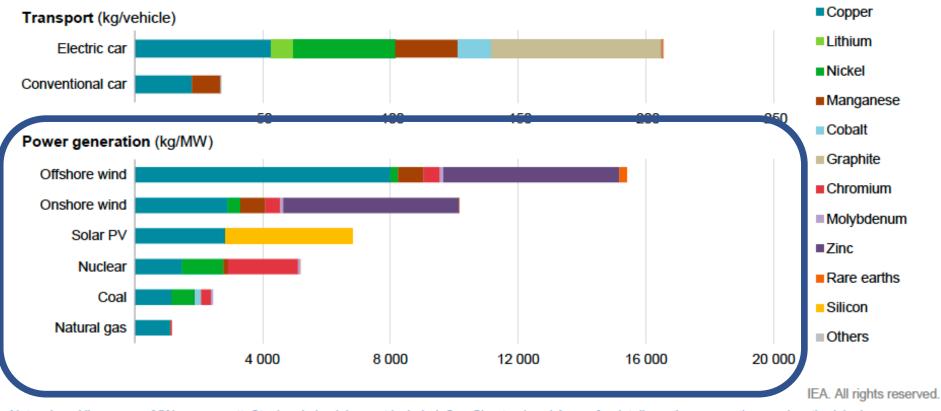


IEA. All rights reserved.

Notes: kg = kilogramme; MW = megawatt. Steel and aluminium not included. See Chapter 1 and Annex for details on the assumptions and methodologies.

Source: iea.org (The Role of Critical Minerals in Clean Energy Transitions, 2021)

Demand for some mineral-based materials will increase significantly

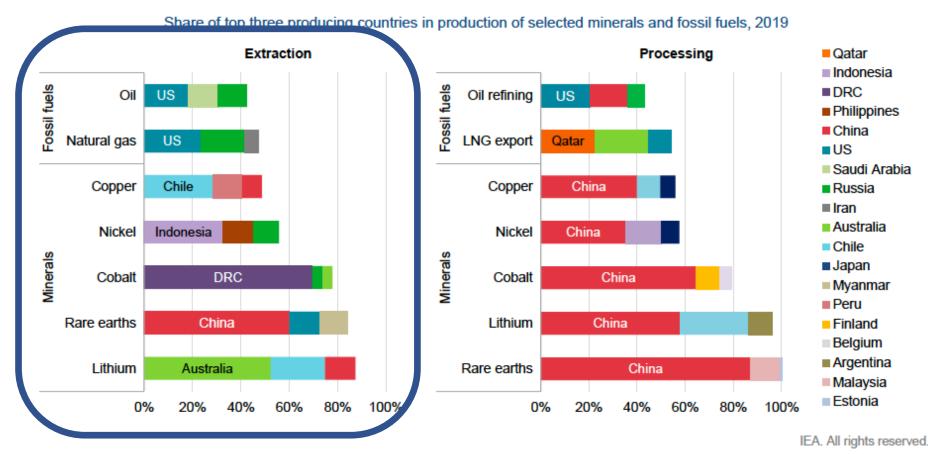

IEA. All rights reserved.

Notes: kg = kilogramme; MW = megawatt. Steel and aluminium not included. See Chapter 1 and Annex for details on the assumptions and methodologies.

Source: iea.org

Demand for some mineral-based materials will increase significantly

Minerals used in selected clean energy technologies



Notes: kg = kilogramme; MW = megawatt. Steel and aluminium not included. See Chapter 1 and Annex for details on the assumptions and methodologies.

Source: iea.org

It's about supply chains not just mining

Production of many energy transition minerals today is more geographically concentrated than that of oil or natural gas

Notes: LNG = liquefied natural gas; US = United States. The values for copper processing are for refining operations. Sources: IEA (2020a); USGS (2021), World Bureau of Metal Statistics (2020); Adamas Intelligence (2020).

Source: iea.org (*The Role of Critical Minerals in the Clean Energy Transitions*, 2021) ¹⁶

It's about supply chains not just mining

Production of many energy transition minerals today is more geographically concentrated than that of oil or natural gas

Notes: LNG = liquefied natural gas; US = United States. The values for copper processing are for refining operations. Sources: IEA (2020a); USGS (2021), World Bureau of Metal Statistics (2020); Adamas Intelligence (2020).

Source: iea.org

Electrification

- Copper
- Not officially a US 'critical' mineral – but certainly essential with few if any substitutes

Financial Times, July 13, 2022

Opinion Copper

'Dr Copper' has a worrying message about the energy transition

The metal has become central to the drive to net zero given its use in electric car batteries and other technologies

DANIEL YERGIN (+ Add to myFT

Image source: pixabay.com

Electronic materials e.g., solar applications, power electronics Gallium, indium, selenium, silver, tellurium, tin

Magnets & motors Wind turbines, EVs, other industrial and household uses Selected rare earths

Source: pexels.com

Energy storage & batteries Lithium ion, solid-state lithium, sodium ion, flow, etc.

Lithium, nickel, cobalt, manganese, graphite, vanadium, sodium, lead, etc.

Sources: new.siemens.com, amazon.com, telegraph.co.uk

Fuel cells

Platinum-group elements, selected rare earths

Source: Toyota.com ²²

Nuclear Cobalt, dysprosium, gadolinium, hafnium, indium

Source: Photo by Patrick Federi on Unsplash

What makes a supply chain resilient?

Resilient

Able to withstand or recover quickly from difficult conditions

Source: lexico.com

Options

Short- to medium-term options

- Increase stockpiles/working inventories
- Develop sourcing arrangements
- Adopt off-the-shelf technologies
 - A material or process

Medium- to long-term options

- Diversify and increase primary production
 - Develop supply chains in more places
- Waste less
 - Increase manufacturing efficiency
 - Enhance re-use and recycling
- Use less
 - Develop substitutes

What mix of private initiative and public policy do we want?

A topic for another time

But a bit of the broader context

After Hyper-Globalization

What should the next trading system be? Can we restore the capacity of the U.S. to produce—and of all nations to regulate capitalism?

BY ROBERT KUTTNER MAY 31, 2022

Reconsideration of globalization

The Myth of the Global

Why Regional Ties Win the Day

By Shannon K. O'Neil July/August 2022

Businessweek Remarks

'Onshoring' Is So Last Year. The New Lingo Is 'Friend-Shoring'

The Biden administration recognizes that the U.S. can't go it alone.

By <u>Peter Coy</u> June 24, 2021, 3:00 AM MDT

Minerals Security Partnership

MEDIA NOTE

JUNE 14, 2022

Reboot: Framework for a New American Industrial Policy

Reconsideration of industrial policy

Protection Without Protectionism

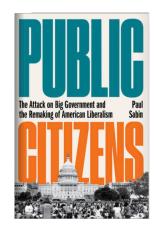
Getting Industrial Policy Right By Shannon K. O'Neil January/February 2021

The New Productivism Paradigm?

Jul 5, 2022 | **DANI RODRIK**

President Biden Invokes Defense Production Act to Accelerate Domestic Manufacturing of Clean Energy

JUNE 6, 2022


Reconsideration of relative roles of Congress, the Administration, and Civil Society

Supreme Court restricts the EPA's authority to mandate carbon emissions reductions

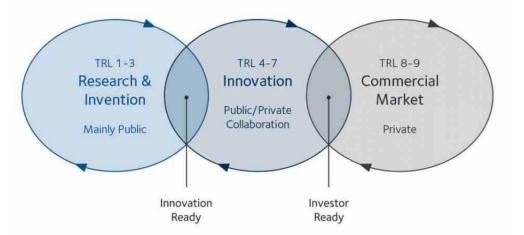
Updated June 30, 2022 · 10:30 AM ET 📵

Government regulation is vital, but it also needs to be efficient

Jimmy Carter had a vision for protecting the environment and consumers - while cutting wasteful regulations

Biden mining order won't change biggest hurdle: Permits

By Jael Holzman, Hannah Northey | 04/08/2022 01:34 PM EDT


Reconsideration of science and technology policy

The Chinese Way of Innovation

What Washington Can Learn From Beijing About Investing in Tech

By Matt Sheehan April 21, 2022

'Deploy, deploy, deploy' - DOE, mid to late 2021

Source: <u>https://www.uk-cpi.com/blog/</u> the-innovation-challenge-and-the-valley-of-death ³³

What Makes a Material Critical? What Makes a Supply Chain Resilient?

Rod Eggert July 14, 2022 DOE Critical Materials Workshop Golden, Colorado

Critical Materials Institute

Spring 2022, Eggert Research Group