

Fossil Energy and Carbon Management

Fossil Energy and Carbon Management Priorities in Carbon Management

Dr. Emily Grubert

DEPUTY ASSISTANT SECRETARY OFFICE OF CARBON MANAGEMENT

Fossil Energy and Carbon Management (FECM)

Office of Fossil Energy and Carbon Management

DOE-FE is now DOE-FECM

New name for our office reflects our **<u>new vision</u>**

- President Biden's goals:
 - \circ 50% emissions reduction by 2030
 - \circ CO₂ emissions-free power sector by 2035
 - Net zero emissions economy by no later than 2050

U.S. Environmental Protection Agency (2021). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019

FECM Mission: Deep Decarbonization and Environmental Justice

Minimize environmental and climate impacts of fossil fuels from extraction to use

Priority Technology Areas

- 1. Point source carbon capture
- 2. Carbon dioxide (CO_2) removal
- 3. CO_2 conversion into products
- 4. Reliable CO₂ storage
- 5. Hydrogen production
- 6. Critical mineral production from industrial and mining waste
- 7. Methane mitigation

Office of Carbon Management (FECM-20)

Office of Resource Sustainability (FECM-30)

Enacting Justice and Supporting Legacy Communities

- Good-paying jobs
- Job growth acceleration
- Healthy economic transitions
- Improve community conditions

Address hardest-to-decarbonize applications in the electricity and industrial sectors

A Vision for Carbon Management

A carbon management framework that will guide FECM's engagement with offices across the Department, Federal agencies, tribal and international governments, industry, non-governmental organizations, and communities

Advancing Justice, Labor, and Engagement

Priorities: Justice, labor, and international and domestic partnerships

Advancing Carbon Management Approaches Toward Deep Decarbonization

Priorities: Point-source carbon capture (PSC), carbon dioxide conversion, carbon dioxide removal (CDR), and reliable carbon transport and storage

Advancing Technologies that Lead to Sustainable Energy Resource

Priorities: Hydrogen with carbon management, domestic critical minerals (CM) production, and methane mitigation

Bipartisan Infrastructure Law (BIL)

FECM - **\$6.5 billion** in new carbon management funding over 5 years through the Infrastructure Investment and Jobs Act (Bipartisan Infrastructure Law).

Carbon Dioxide Removal - Direct Air Capture Regional Direct Air Capture Hubs: \$3.5 billion DAC Technology Prize Competition: \$115 million

Carbon Dioxide Utilization and Storage

Carbon Storage Validation and Testing: \$2.5 billion Carbon Utilization Program: \$310 million

Front-End Engineering Design Studies Carbon Capture Technology Program: \$100 million

Critical Minerals and Materials Rare Earth Element Demonstration: \$140 million Rare Earth Mineral Security: \$127 million

Office of Clean Energy Demonstrations (OCED)

OCED established December 2021 Principal Deputy Director, Kelly Cummins

- Builds on existing DOE investments in clean energy research and development
- Increases DOE's partnership with industry leaders

OCED Projects Areas:

- Clean hydrogen
- Carbon capture thoughtful siting w/ focus on hard to avoid sectors (e.g., industry and committed emissions)
- Grid-scale energy storage
- Small modular reactors and more

FECM-OCED Project Coordination

Hydrogen Hubs

 \$8 billion (for at least four projects, including at least one using fossil fuels with carbon management)

Carbon Capture Demonstrations and Large Pilots

• \$3.5 billion

Carbon Dioxide Transportation Infrastructure Finance and Innovation Program Account

• Loan Programs Office: \$2.1 billion

CCUS and CDR Facilitate Deep Decarbonization

Reduce the cost of capture/increase rates

- Power Sector
- Industry
- Carbon Dioxide Removal
- Design Studies and Demonstrations

Develop low-carbon supply chains through conversion

- Aggregates
- Fuels and Chemicals
- Solid Carbon Products

Optimize geologic storage operations

- CarbonSAFE Infrastructure, Partnerships
- Geomechanics (pressure and state of stress)
- Conversion of fossil assets
- Enabling real-time decision making through AI

CO₂ Management Addresses Diverse Sources, and the CO₂ Concentration Affects Technical and Cost Challenges

Cost of Capturing CO_2 from Industrial Sources, January 10, 2014, DOE/NETL-2013/1602

Point Source Capture Program

Integrated Approach to Accelerate Technology Development

Point Source Capture Focus

- Develop capture technologies for the power and industrial sectors
- Reduce CAPEX/OPEX under a wide range of feed conditions
- Achieve high capture efficiencies (>95%)
- Maximize co-benefit pollutant removal
- Engineering-based Simulation (CCSI²)
- Create low-carbon supply chains (i.e., cement, steel, hydrogen, etc.)

Net-Zero and Role of Carbon Dioxide Removal

Reference: CDR Primer, 2021

Carbon Negative Shot: Key Performance Elements

Carbon Negative Shot's key performance elements will guide a responsible industry that is responsive to the climate crisis, such that multiple true, durable removal pathways can be deployed at their most affordable cost at the scale required to address the climate crisis.

Blue are costs associated with ambient air capture Enables necessary gigaton-scale **Green** are costs associated with ensuring durable storage

removal

Fossil Energy and Carbon Management Ensure the first ton of removal is true, durable removal

Ensure the last ton of removal is as affordable as it can be

CDR Areas of Interest in FECM

- Biomass with Carbon Removal and Storage
- Direct Air Capture (DAC)
- Direct Ocean Capture (DOC)
- Accelerated Weathering and Mineralization

- Rigorous LCA and TEA (net-removed costs)
- Low-carbon energy, land, water resources required
- Leveraging transport and storage infrastructure
- Justice and work force considerations

Carbon Transport and Storage RD&D: An Iterative Process towards Deployment

Advanced Storage Focus

- Well Integrity and mitigation •
- Monitoring, verification, and • accounting
- Storage complex efficiency and security
- **SMART:** Science-Informed Machine Learning for Accelerating Real Time Decisions
- **NRAP:** National Risk Assessment Partnership

Advanced Storage

Harness early-stage storage concepts to technology demonstration

OGY RbD

.

CO₂ Conversion (the new "U")

Hydrogen with Carbon Management Division

Fossil Energy and Carbon Management

Questions?

