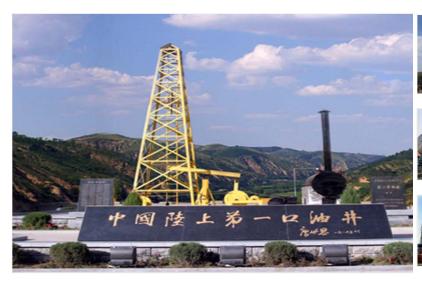
延长石油CCUS项目进展与展望

高瑞民

交流提纲


- 一、延长石油集团概况
- 二、开展CCUS背景与优势
- 三、项目技术研究进展
- 四、矿场实践应用情况
- 五、后期规划与研究方向

延长石油集团概况

公司发展: 陕西延长石油(集团)有限责任公司是中国拥有石油、天然气勘 探开采资质的四家企业之一,是中国陆上第一口油井的诞生地,至今已走过 109年发展历程,为中国石油工业发展做出了重要贡献。

业务范围:延长石油业务涉及油气探采、加工、储运、销售。矿业开发、能 源化工、装备制造、工程设计与建设、技术研发和金融保险等。

油气田开发

油气化工

工程建设

科研与设计

太阳能产业

金融保险

一、延长石油集团概况

企业效益: 2013年生产原油1254.4万吨,加工原油1403万吨;实现营业收入1865亿元,进入世界企业500强。

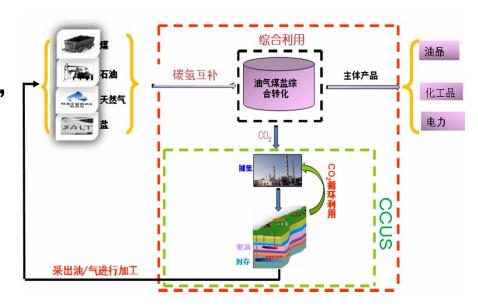
企业资源:延长石油地处鄂尔多斯盆地,拥有25亿吨石油,3300亿方天然气,150亿吨煤炭探明储量。

公司目标与价值: 2020年进入世界300强,收入5000亿元,建成世界一流的综合性能源化工企业。

背景:

- ◆ 企业义务: 落实中美应对气候变化战略合作的具体行动,是对中国政府应对全球气候变化的有力支撑;
- ◆ **企业责任**: 延长石油与油田紧邻的煤化工产业产生大量高浓度二氧化碳,把新型清洁煤化工技术与油田E0R有机结合,是实现二氧化碳减排的有益探索。
- ◆ 企业发展: 作为油气煤盐综合发展的企业,延长石油在实现碳减排的同时, 实现特低渗油藏采收率提高,保障了油田稳产及陕北地方经济可持续发展;
- ◆ 问题解决: 陕北地区水资源匮乏、环境脆弱亟需保护, CCUS是陕北缺水地区保护环境的有效手段, 是延长走环境保护可持续发展的必然选择。

通过开展CCUS项目,将 "碳捕集一提高油田采收率一碳封存一碳减排"融为一体,是延长石油实现温室气体减排和产业可持续发展的必然选择。



优势:

延长石油在同一地域拥有煤、油、气,为开展一体化CCUS工作 奠定了基础。

1、煤、油、气资源综合利用,从源头实现节能减排

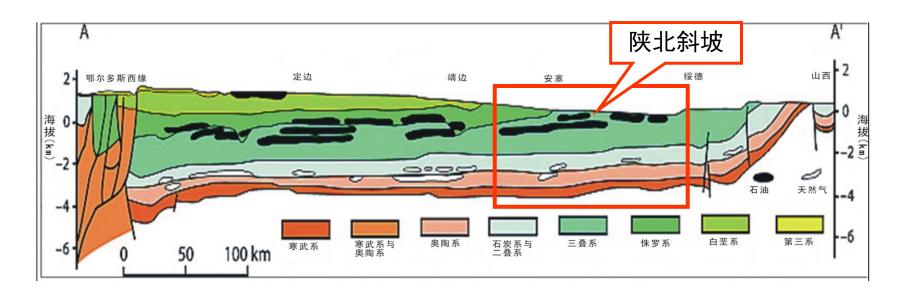
延长石油拥有丰富的煤、油、气资源,通过综合利用,实现碳氢互补, 把传统煤化工技术和油气化工技术创 新结合,大幅度减少CO₂排放,提高了 能源利用效率。

2、CO2气源与运输成本低并实现就地埋存

- ◆延长石油煤化工产业排出的CO₂浓度高,捕集装置采用低温甲醇洗和 胺吸收技术结合,具有投资少,成本和能耗低的优势,目前在建和运行的 CO₂捕集装置吨成本低于100元,相当于18美元;
 - ◆油田和煤化工厂处于同一地域,CO₂运输成本低。

3、CO₂提高采收率技术应用广泛

- ◆延长油田属于特低渗透油藏,油田采收率低,CO₂驱油可提高采收率,保证油田长期稳产,且EOR效益可弥补CCS的成本;
 - ◆陕北地区水资源匮乏,用CO₂驱油代替注水开发可节约大量水资源。


4、CO2压裂具有技术优势和大量需求

- ◆ 大量油气井和页岩气井投产需要压裂;
- ◆ CO₂压裂返排率高,用水量少,使初期产量大幅度提高。

5、有稳定的地质构造和充足封存空间

- ◆陕北斜坡地层稳定,构造简单,断层不发育,CO₂封存安全可靠,是我国陆上实施CO₂地质封存最有利地区之一;
- ◆有大量需要提高采收率的油藏和盐水层封存CO₂,初步估算,盆地内油藏CO₂ 封存量达5-10亿吨,盐水层封存量达数百亿吨;延长油田可封存CO₂1.8亿吨。
 - ◆地层压力、温度有利于CO₂保持超临界状态,实现永久封存。

6、国家支持,企业重视,国际合作

- ◆国家大力支持:延长石油CCUS工作获得国家发改委和科技部支持,先后启动了"中-澳CCUS—体化国际合作示范"、"国家科技支撑计划"和"863计划"。
- ◆企业高度重视:延长石油高度重视CCUS工作,成立了项目实施领导小组,并投入配套资金3亿元。
- ◆国际广泛合作:加入中美清洁煤技术联盟,与全球碳捕集研究院、美国怀俄明大学、西弗吉尼亚大学、加拿大里贾纳大学、美国空气化工产品公司建立CCUS合作机制。

年份	来源	项目
2007	国家科技支撑计划	低(超低)渗透油藏气驱提高采收率技术研究(川口)
2010	集团公司	延长油田CO ₂ 驱提高采收率配套技术研究(3亿)
2011	国家科技支撑计划	陕北煤化工CO₂捕集、埋存与提高采收率技术示范
2012	国家高新技术研究发展计划(863计划)	燃煤电厂烟气CCUS关键技术
2013	澳大利亚碳捕集封存研究院	中-澳CCUS一体化国际合作示范项目
2013	陕西省科技统筹创新工程计划	陕北00₂驱提高采收率关键技术及现场先导试验
2014	集团公司	陕北地区CO₂驱油、压裂先导试验

三、项目技术研究进展

自2007年以来,在国家科技项目、国际合作项目和集团重大 专项的支持下,开展了CO₂捕集、驱油与埋存四项技术研究。

1、煤化工CO₂捕集技术

(1) 研发了一套CO₂捕集多功能中试试验装置

针对低浓度CO₂(20%左右)或者采出气 重新捕集、分离、提纯再利用而开发了一 套CO₂捕集多功能中试试验装置。

参数指标:

CO₂处理能力 200kg/d; 捕集能耗1.084GJ/t:

技术特点:

工艺相对简单、安全系数高、<mark>能耗低、</mark>设备稳定性高、投资成本低、得到二氧化碳产品纯度高。

1、煤化工CO₂捕集技术

(2) 研发出3项CO₂捕集工艺技术

- ◆针对现有延长石油集团煤化工排放的纯度高(大于80%) CO₂尾气 ,开发出 CERI低温甲醇洗工艺技术,通过闪蒸的方式,对不含硫化氢的富CO₂甲醇富液进行分离提纯。
- ◆针对含硫的富CO₂甲醇富液,开发出HNU1低温甲醇洗工艺技术,通过多级闪蒸、 压缩、干燥脱水等途径,进一步提高CO₂捕获的产能和降低单位捕获能耗。
- ◆针对油田的伴生气,开发一套油田采出气氨吸收法CO₂分离工艺技术,对油田采出气中的CO₂进行分离提纯。

技术名称	产量	CO ₂ 纯度	系统能耗	传统捕集能耗	冷却水
12个台外	(t/h)	(%)	$(GJ/t CO_2)$	$(GJ/t CO_2)$	(t/h)
CERI工艺	8. 5	99. 6	1. 24	2. 85	134. 46
HNU1工艺	22. 2	99. 6	0. 62	2. 70	135. 5
伴生气CO ₂ 捕集工艺	11. 09	86	1. 08	1. 25	

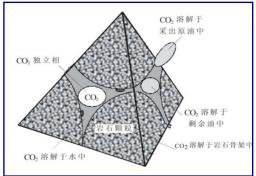
(1)建立延长石油CO₂驱油与埋存油藏筛选标准

综合考虑地质、流体、开发因素、采收率变化以及油气比等多种因素,提出了延长油田CO₂驱油与埋存油藏筛选标准,评价了延长油田CO₂驱油与埋存的适宜性。

油田名称	区块内总 油藏数	适合CO ₂ 驱油藏	不适合 CO ₂ 驱油 藏	适合CO ₂ 驱油藏数 目占比	总地质 储量 (×10 ⁴ t)	适合CO ₂ 驱 储量 (×10 ⁴ t)	不适合CO ₂ 驱储量 (×10 ⁴ t)	适合CO ₂ 驱 油藏储量 占比
杏子川	13	12	1	0.92	10685	10495	190	0.98
靖边	15	14	1	0.9333	12340.5	12071	269.5	0.97816
永宁	5	4	1	0.8	25315.5	24727.33	588.2	0.97677
西区	3	3	0	1.00	12011.9	12011.87	0	1.00
七里村	8	1	7	0.13	12691	1934	10757	0.15
瓦窑堡	16	11	5	0.6875	13923.9	11141.7	2782	0.80019
total	178	150	28	0.84	219138	176274.1	42864	0.80

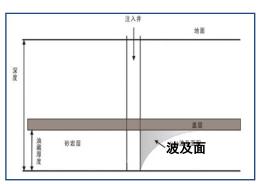
(2) 形成延长石油CO₂驱油与埋存潜力评价方法

油藏CO₂埋存量计算模型


◆ CO₂在原油中溶解度计 算模型

◆ CO₂在地层水中溶解度 计算模型

◆关井条件下CO₂在油藏中埋存量的计算模型


油藏CO₂埋存驱 油潜力评价模型

- ◆ CO₂混相驱驱油潜力 评价模型
- ◆ CO₂非混相驱驱油潜 力评价模型

平

衡

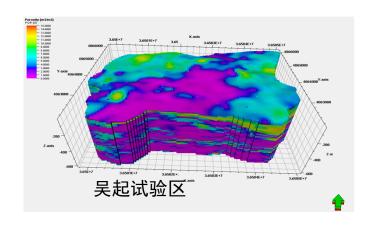
序	号	油藏代码	地质储量(10 ⁴ t)	埋存量(10 ⁴ t)	提高采收率幅度(%)	CO ₂ 利用系数	CO₂埋存系数
	1	化子坪区-长2层	1015	265.63	6.99	0.27	0.26
	2	乔家洼-长6	931	209.87	4.03	0.18	0.23
	3	永宁油区-长6	1333.69	357.41	10.83	0.40	0.27
	4	义吴-长4+5、长6	4754.79	1207.39	9.85	0.39	0.25
	5	定边延10	424	145.83	10.83	0.31	0.34
	6	郭旗西区-长61	3110	769.90	8.67	0.35	0.25
	7	直罗-埝沟-长2	240	62.42	7.43	0.29	0.26
	8	南区-湫沿山-长6	278.6	62.80	10.52	0.47	0.23
	9	吴起-油沟-长4+5	801	194.25	8.58	0.58	0.56
1	10	英旺-庙湾-长8	454.41	156.29	5.51	0.16	0.34
	11	横山-魏家楼-长6	430.56	97.06	5.65	0.25	0.23
	12	中山川-长6	8316.2	2162.91	4.56	0.18	0.26

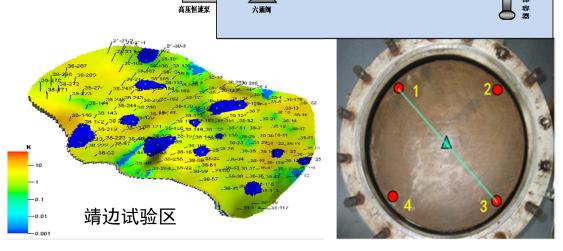
(3) 建立CO₂驱油藏工程方法与实验评价体系

◆形成了适合延长特低渗油藏CO₂气驱的油藏工程方法

开发地质:刻画储层非均质特征和分布规律,建立精细油藏模型。

油藏评价:量化低渗透油藏产能特征、油水关系、开发特征。


油藏数值模拟:建立吴起和靖边三维地质模型。


◆建立特低渗透油藏CO₂驱油实验评价技术体系:

可进行非均质性控制

开展了超长岩心驱替实验

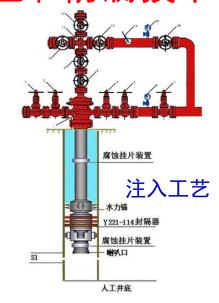
建立了径向低渗大型物理模型

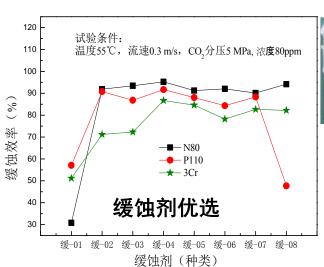
岩心夹持器

(4) 形成CO₂驱配套工艺和防腐技术

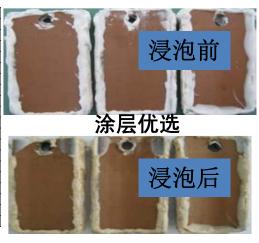
◆注入井配套工艺

注入井井口装置及管柱优化 井口、油管及封隔器优选


◆采油井配套工艺


改进采油井口装置 优选择采油井机、杆、泵 优化油井管柱和杆柱设计

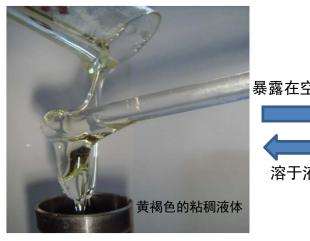
◆防腐技术研究


注入井采取碳钢+封隔器+油套 缓蚀剂的技术路线

CO₂采出井综合防腐措施重点放 在碳钢+缓蚀剂

(5) 研发了CO₂驱油扩大波及体积技术

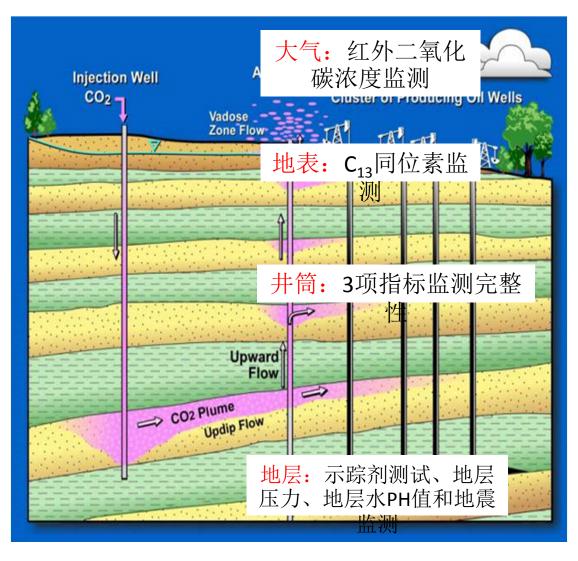
- ◆初期采用水气交替法扩大CO₂波及体积——水气交替法
- ◆封堵CO₂在裂缝中窜逸通道——改性淀粉封窜


特点:成胶后的强度很高,且置于高压CO₂环境下体系的性能保持稳定,不受高压气体的影响。

◆封堵CO。驱过程中高渗窜流层——小分子胺封窜

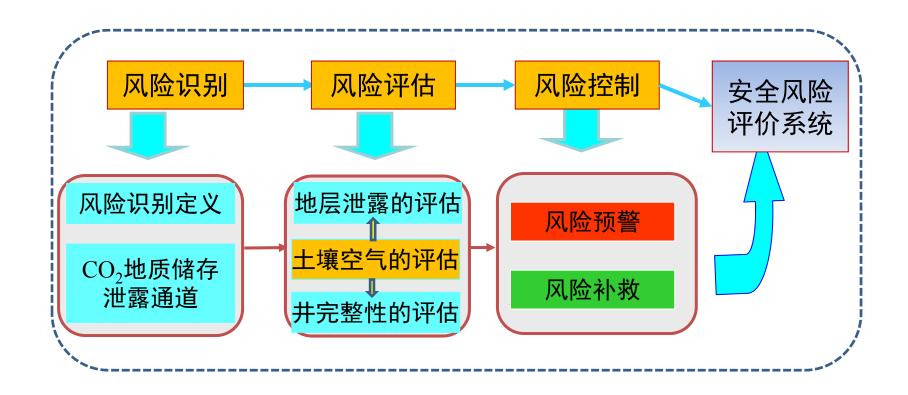
机理:小分子有机胺初始粘度低,进入低渗透层00,气窜通道,与00,生成盐,封堵窜流通道。

改性淀粉成胶后粘度高



小分子有机胺与002生成盐, 封堵窜流通道

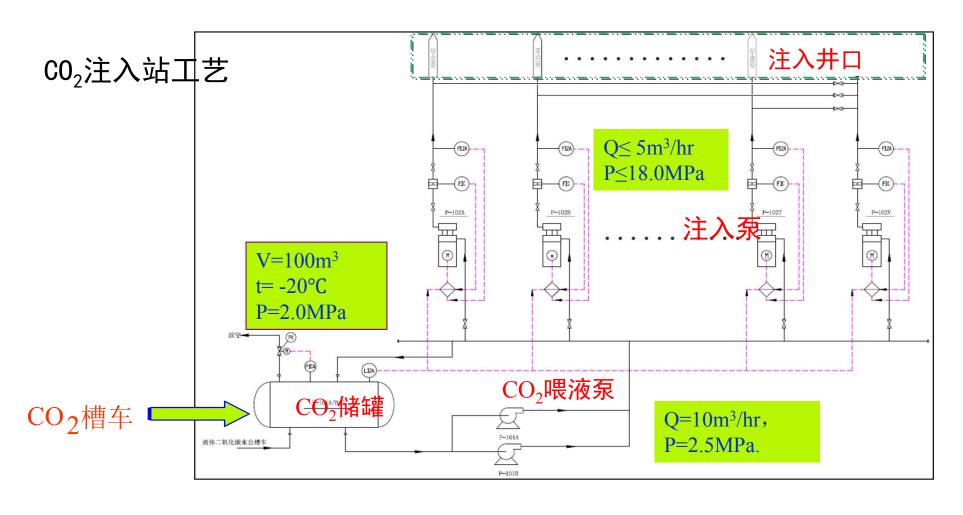
(6) CO₂安全监测技术研究



监	监测间隔	
注入井	注入参数(注入 量、压力、温度)	1次/旬
	生产动态	1次/日
	动液面	1次/旬
	伴生气CO ₂ 浓度	1次/旬
	压力监测井监测	在线直读
油井	原油组分	1次/季
	产出剖面	2次/年
	静压	2次/年
	地层水水质	1次/月
	腐蚀速率	据具体情况
	示踪剂	
か日	地层压力	
地层 	地层水PH	
	地震监测	
	大气CO2浓度	1次/半年
地表 	土壤气С13监测	1次/年
	植物生长状况	1次/半年

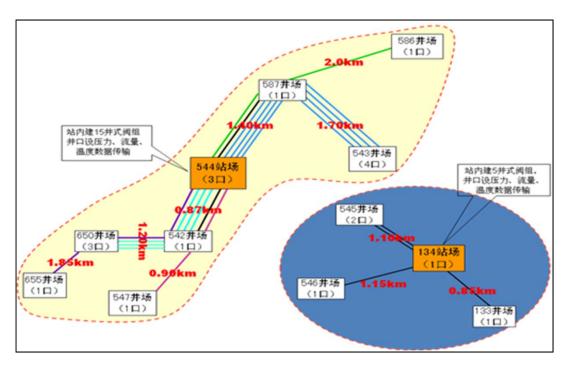
(7) 建立了CO₂地质埋存安全风险评价和预警的方法流程

明确了预警计算流程,确定了预警结果形式



3、CO₂驱地面工程技术

(1) 完成撬装式的CO₂驱地面注入工艺流程研究并实现矿场应用


井场注入流程: 槽车一储罐一喂液泵一注入泵一注入井口

3、CO₂驱地面工程技术

(2)完成靖边CO₂驱地面注入工艺整体设计研究

- ◆ CO₂注入站2座,
- 设计规模600m³/d;
- ◆新建道路2条,
- 总长3km;
- ◆单井注入管线

20km;

1#站: 位于45544站场

CO₂储罐: V=100m³(4座);

喂液泵: 4台(2用2备);

注入泵: 6台CO₂(4用2备);

满足15口井注入。

2#站: 位于38134站场

 CO_2 储罐: $V=100m^3$ (2座);

喂液泵: 2台(1用1备);

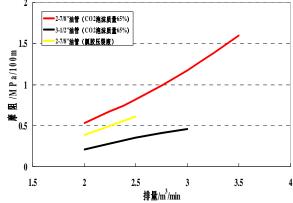
注入泵: 3台CO。(2用1备);

满足5口井注入。

4、CO₂压裂技术研发

进过室内研发与现场试验,研发了3种CO2压裂技术

(1) 前置CO₂增能压裂工艺技术

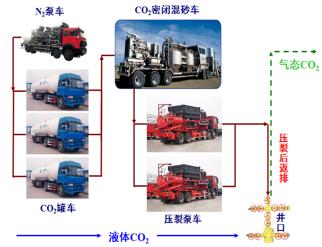

结合液态CO₂高返排、低伤害以及加砂压裂改造能力强的特点,提出了先采用纯液态CO₂压开地层、然后再开展常规水力压裂的前置CO₂增能压裂技术,提高了CO₂压裂的返排速度。

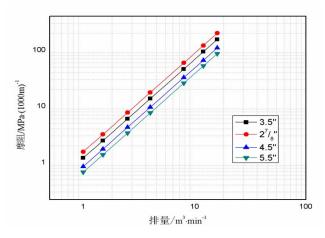
(2) CO₂泡沫压裂工艺技术

将液态CO₂与常规压裂液按照一定比例(泡沫质量>52%)混合后形成的泡沫流体作为携砂液注入地层进行压裂改造的技术,节水、低伤害。

4、CO₂压裂技术研发

(3) CO₂干法压裂工艺技术


以纯液态CO₂作为携砂液进行储层压裂改造的工艺技术,压后CO₂能快速、彻底返排出地层,真正意义上实现地层<mark>无伤害</mark>改造。


◆液态C02管流性能测试

国内首次系统评价了液态(超临界)CO₂流动摩擦系数、动态滤失特性、动态携砂性能,为CO₂干法压裂施工参数优化提供理论支撑。

◆ CO₂干法压裂优化技术

考虑泵注、建立了 CO_2 井筒流动摩阻图版,优化了干法压裂施工参数。

经过多年科研攻关和实践,延长石油在碳减排、捕集与埋存工作已经取得实质性进展。

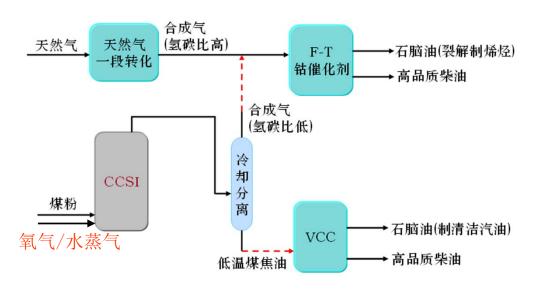
1、靖边煤化工示范项目

针对煤碳多氢少和石油、天然气氢多碳少特征, 通过碳氢互补,延长石油实施了全球首套油气煤 综合利用示范项目。该项目总投资269亿元人民币, 主要生产60万吨/年聚乙烯、60万吨/年聚丙烯等产 品,2014年7月投产,实现年减排435万吨。

序号	靖边煤化工项目	本项目	国际先进	国内先进	与国际先进比较	备注
1	甲醇产量(10 ⁴ t/y)	180	165.35	153.12	+8.86%	原料数量一致
3	能耗(GJ/t甲醇)	37	48	50	-23.8%	
4	甲醇用水(m³/t甲醇)	4.1	10	12	-59.00%	
6	CO ₂ 排放(10 ⁴ t/y)	285	720	720	-60.42%	年减排435万吨
7	SO ₂ 排放(t/y)	634	1389	1389	-54.36%	
8	废水排放(m³/h)	83.4	252.9	252.9	-67.02%	年节水1000万方
9	固废排放(10 ⁴ t/y)	12.82	39.82	39.82	-67.81%	渣场填埋

2、榆林油煤共炼示范项目

在单一重油加氢裂化制油、煤炭加 氢液化制油技术的基础上,延长石油合 作开发了油煤共炼技术,以渣油、重稠 油、煤焦油、中低阶煤等为原料,发挥 煤与重油在反应中的协同效应,大幅提 高资源转化效率,实现年减排180万吨



项 目	规模	建设投资	吨油投资	能效	CO2排放	水耗
煤间接液化制油	100万吨/年	>160亿	>16000元/吨	40.5%	7.2吨	>10吨/吨油
煤直接液化制油	100万吨/年	>120亿	>12000元/吨	50.26%	5.2吨	10吨/吨油
油煤共炼制油	33万吨/年	≈251⁄Z	≈7500元/吨	70.65%	1.1吨	3.36吨/吨油

3、煤热解与气化一体化(CCSI)项目

延长石油自主开发了粉煤高能效、高收率快速热解制油与焦末制合成气一体化技术,即煤热解与气化一体化(CCSI)技术。目前小试和中试冷漠实验已经顺利完成,36吨/天的CCSI技术中试装置目前正进行工程设计。

中试冷漠装置

CCSI年加工1亿吨煤效益分析

1. 原料成本: 350亿元

2. 产品价值: 2360亿元

煤焦油加工产值:960亿元

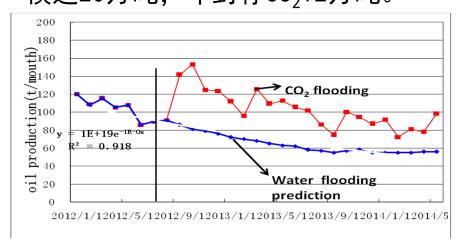
合成气、油产值: 1400亿元

3. 资源增加值: 2010亿元

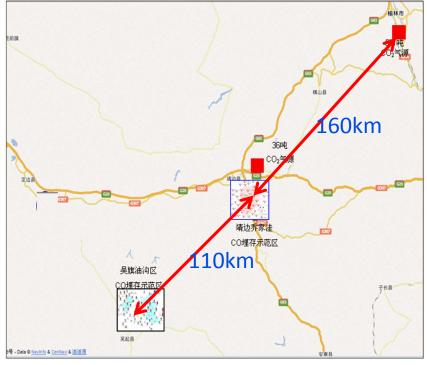
4、低成本煤化工CO2捕集装置

榆林煤化公司于2012年11月建成了5万吨/年的CO₂捕集装置。

兴化新科气体公司利用先进的工艺技术 及装备捕集提纯工业废气,生产8万吨/ 年食品级液态CO₂。

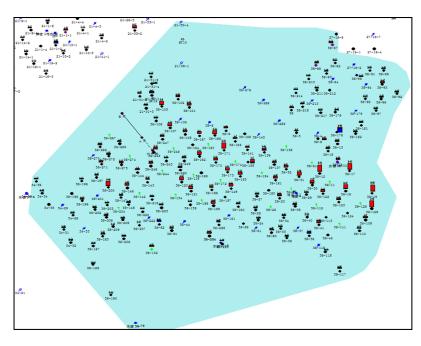


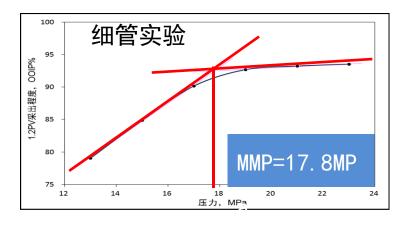
中煤榆林能化公司2014年启动建设36万吨/年的捕集装置,计划2015年10月建成投产。

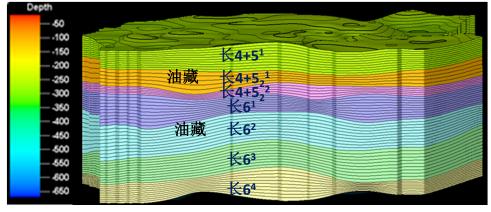


5、CO₂-EOR与埋存先导试验

(1) 靖边CO₂-EOR与埋存先导试验区 乔家洼于2012年9月5日运行, 截止2014年9月,注入5个井组,累 计注入1.8万吨液态CO₂,考虑水驱 递减累计增油900吨。2015年底将 新增16个注入井组,年注入CO₂规 模达20万吨,年封存CO₂12万吨。







(2) 吴起CO₂-EOR与埋存先导试验区

第二期在吴起油区开展CO₂混相驱提高采收率试验,试验区面积14.8km²。2014年8月将完成5个井组的CO₂注入与地面注采集输工作,并开始注入。2015年吴起试验区注入规模将达到36个井组,年注CO₂达30万吨,年封存18万吨CO₂。

6、CO₂压裂矿场应用

- (1) 页岩气井 CO_2 压裂:延页平3井进行了 CO_2 压裂,加 CO_2 量767方,加砂728方,压裂液量2万多方。通过 CO_2 增能压裂,提高了单井产量和压裂液返排率。
- (2)天然气井 CO_2 压裂:针对低压致密砂岩气藏特征,开发了VES- CO_2 泡沫压裂工艺技术,现场应用增产效果明显。试3井压前日产气量6400方、无阻流量为2.15万方,采用VES- CO_2 泡沫压裂后日产气量3.8万方、无阻流量近10万方,产量提高3倍。

五、后期规划与研究方向

经过前期科研和实践积累,延长石油在十三五末初步工作计划安排如下:

- 1、开展煤油气联合化工减排工作,通过碳氢互补与煤分质提纯,创造化石能源洁净利用新模式,相比传统煤化工年减排二氧化碳1200万吨以上。重点创新开展煤油气制烯烃技术、煤油共炼技术,大幅度减少CO₂排放,提高能源效率。
- ◆油气煤综合转化-煤油气制烯烃,年产60万吨聚乙烯、 60万吨聚丙烯等产品。
- ◆煤油共炼-靖边45万吨/年煤油共炼示范项目2014年5月份投料试车;神木50万吨/年煤焦油加氢示范项目2014年10月份投料试车。

五、后期规划与研究方向

- 2、开展CCUS工作安排如下:
- ◆在现有50万吨二氧化碳捕集基础上,开展350万吨煤化工CO₂捕集装置 论证,使总捕集能力达到400万吨;
- ◆论证并建设总长约200-300公里、输送能力400万吨/年CO₂输送管线;
- ◆建成600个井组以上的CO₂地质封存与提高原油采收率工业化应用基地, 年增油100万吨,年封存二氧化碳240万吨,提高原油采收率5%-10%, 形成油井产出CO₂再捕集与循环利用。
- ◆开展100口页岩气和天然气井二氧化碳压裂;
- ◆建设一支高水平的CCUS运营管理团队,可以承担减排、捕集、应用与 封存管理与技术工作重任,保证延长石油的CCUS工作健康稳步发展。

五、后期规划与研究方向

- 3、下一步延长石油CCUS研究方向:
- ◆CO₂捕集、分离及输送技术研究──包括煤化工CO₂捕集新流程模拟与优化;捕获分离技术经济评价;液体与超临界CO₂输送技术;油田采出气CO₂分离工艺。
- **◆CO₂埋存与驱油配套技术研究**──包括CO₂灌注数值模拟及注气方案优化;CO₂埋存与驱油地面工程技术;腐蚀结垢评价与防护技术研究
- ◆CO₂封存与驱油安全监测技术研究──包括进CO₂地质封存与驱油安全 监测;CO₂驱替前缘和气窜监测;井筒注入动态和产出动态监测
- ◆CO₂压裂工艺技术研究
- **◆**CCUS政策与法律法规研究

结束语

二氧化碳高效利用与地质埋存相结合的技术思路是实现碳减排、提高石油采收率的有效途径。延长石油愿与国内外同行进一步加强交流与合作,创新驱动,加强资源综合利用技术攻关,积极倡导低碳理念,为全球化石能源的高效、清洁、低碳利用做出积极地贡献。

汇报结束 谢谢!