The Progress and Outlook of Integrated CCUS Demo of Yanchang Petroleum

Speaker: Gao Ruimin

China .Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd

SEP 9,2014

- 1. Profile of Yanchang Petroleum
- 2. Background and Advantages
- 3. Research and Development
- 4. Progress of Field Applications
- 5. Planning

1. Profile of Yanchang Petroleum

History: Shaanxi Yanchang Petroleum (Group) Corp. Ltd is one of the four qualified enterprises for oil and gas exploration in China. The first oil well in mainland China was drilled in this area 108 years ago. It has made an important contribution to the national construction.
Businesses: involve oil and gas exploration and production, oil refining, storage and transportation, oil-selling, mining industry, new energy, equipment manufacturing, engineering design and construction, technology research and development and financial service.

1. Profile of Yanchang Petroleum

Benefits : Yanchang have produced crude oil by 12.54 million tons and refined crude oil by 14.03 million tons in 2013; The sales revenue of 2013 is 186.5 billions, and has entered the world top 500 enterprises.

◆ Resource: Yanchang located in Ordos basin, the proved reserves of oil is 2.5 billion tons, the proved reserves of natural gas is 330 billion m³, the proved reserves of coal is15 billion tons.

• Objective: Yanchang will have endeavored to realize 500 billion Yuan of operating revenues by the end of "The Thirteen Five-Year Plan", and entered into the top 300 enterprises of the world.

2. Background and Advantages

Background

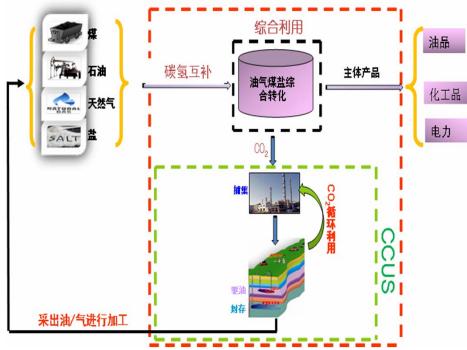
Emission reduction pressure: With the rapid economic development, as the biggest producer, consumer and emitter of carbon, China is facing the growing pressure of carbon emission reduction.

• Enterprise responsibility: Coal chemical industry of YanChang releases plenty of highconcentration carbon dioxide, which needs to be handled reasonably.

Economic development: As a comprehensive developed enterprise, YanChang realizes economic sustainable development for both northern Shaanxi district and the company itself.

Problem solving: During development process, YanChang needs to overcome the problem of low permeability, unstable yields, water shortage and fragile environment.

Through out the development of CCUS project, we must combine "carbon capture-EORcarbon storage-carbon reduction "together, and it's the inevitable choice of YanChang to realize emission reduction and industry sustainable development.



Advantages

There are abundant coal, oil and natural gas resources belonging to Yanchang petroleum in the north of Shaanxi province, which lays the foundation for the integrated CCUS project.

1)Energy saving and carbon reduction by comprehensively making use of coal, oil and gas

Yanchang Petroleum is rich in resources such as coal, oil, gas, and so on, which can bring complementation of carbon molecules and hydrogen molecules by comprehensive utilization. The innovative jointing of coal chemical and oil&gas Chemical can make CO_2 emission reduce sharply, thereby enhance energy efficiency.

2) CO₂ capture and transportation with low-cost

The purity of CO_2 that come from coal chemical industry of Yanchang is very high, captured devices adopt Rectisol process with the characteristic of low cost and energy-consuming, the cost of running capture devices is just 18 \$.

The cost of CO_2 transportation is low because oil field and coal chemical plants locate in the same areas.

3) Broad prospects of CO₂-EOR

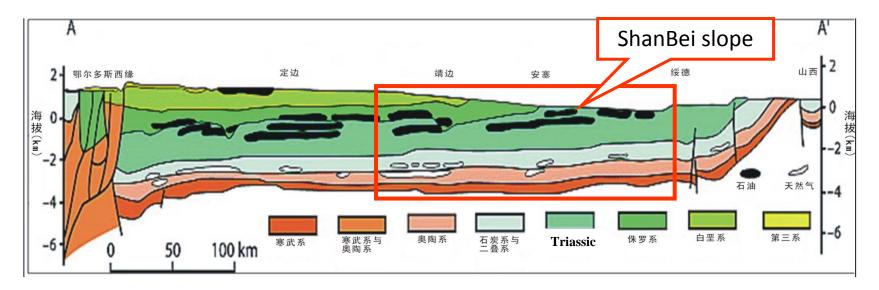
 \diamond Yanchang oil reservoir belong to ultra-low permeability, the oil recovery is 10%, CO₂ flooding can enhance oil recovery by 5-10%, therefore ensure sustained oil production.

 \diamond replacing water flooding with CO₂ flooding can save huge volume of water in north of Shaanxi which is water resource shortage.

• benefit of CO_2 -EOR can make up for CCUS cost, so that both social and economic benefits can be achieved.

4) Advantages of CO₂ fracturing and enormous demand

• Most of wells need to be fracturing for producing, besides saving lots of water, CO_2 fracturing can increase production by 50%.


2. Background and Advantages

4) Ample storage volume and Stable geologic structure

The geology of Ordos basin is stable and simple structure with less fault, it is safe for CO_2 storage, and is the most advantageous areas of CO_2 storage in China.

According to preliminary estimate, reservoir can storage CO_2 by 500~1000 million tons and deep brine aquifers can storage CO_2 by 10 billion tons in Ordos basin, Yanchang Oil-field can storage CO_2 by 180 million tons.

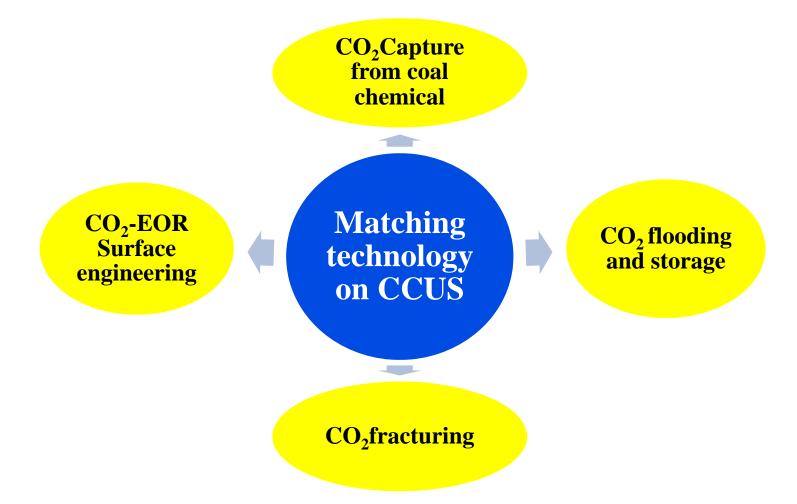
The reservoir depth is $1^{\sim}3$ Km, it is better for CO₂ injected by supercritical state.

2. Background and Advantage

5) State-sponsored, Corporate attention, International cooperation

State-sponsored : Yanchang Petroleum got supports from National Development and Reform Commission and Ministry of Science and Technology.

Corporate attention : Yanchang Petroleum invested
300million ¥ on CCUS, and established working team.


International cooperation : joined in the US-China Advanced Coal Technology Consortia, and established cooperation mechanism with Institute of global CCUS, University of Wyoming, University of West Virginia, University of Regina, Air Products & Chemicals Corp.

year	sponsor	Relation Projects
2007	Planning of national Supporting technical	research of CO ₂ - EOR in low(ultra-low)permeability reservoir (ChuanKou Oilfield)
2010	Yanchang Petroleum	research on the matching technology of Yanchang Petroleum CO ₂ - EOR(300million)
2011	Planning of national Supporting technical	Technology Demo of CCS and EOR of Shanbei Coal-chemical Industry
2012	Planning of national 863	Key technical research of exhaust gas CCUS of coal-fired power plant
2013	Institute of Australian canbon capture and storage	Demonstration Project of Sino-Australian International Cooperation on CCUS Integration
2013	Shaanxi garverment	Key technical pilot test of CO ₂ - EOR in north of Shaanxi
2014	Yanchang Petroleum	pilot test of CO_2 flooding and fracturing in north of Shaanxi

Since 2007, Yanchang petroleum have researched and developed 4 items of CCUS matching technology under the support of national technical Planning, projects of International cooperation and Yanchang Petroleum Group.

1) Build a set of CO_2 capture multifunction pilot-plant

Research and Development a set of CO_2 capture multifunction pilot-plant which aim at low purity CO_2 (about 20%) and producing CO_2 of recapture, separation, purification and reutilization.

Index parameter

capture capacity :200kg/d;

energy consumption:1.084GJ/t;

Technical characteristics: simple technology, high safety factor, low energy consumption, stable performance, low-cost, high purity

CO₂Capture from coal chemical

2) Developed III types of CO₂ capture technology

Aim at the running coal chemical plant of Yanchang petroleum, developed Rectisol Process technology of CERI by the way of evaporation method, separated and purified no-sulphur Liquid rich methanol that associated with rich CO_2 .

Aim at sulphur liquid rich methanol, developed Rectisol Process technology of HNU1 by the way of flashing, compression, drying, dehydration, further enhanced capture capacity and reduced energy consumption.

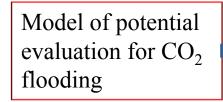
Aim at associated gas that come from CO_2 flooding process in JingBian oilfield, developed a set of producing CO_2 separated technology, separate and Purify producing CO_2 in oilfield.

technology	Capacity (t/h)	Purity (%)	energy consumption (GJ/t CO ₂)	Traditional energy consumption (GJ/t CO ₂)	Cooling water(t/h)
CERI	8.5	99.6	1.24	2.85	134.46
HNU1	22.2	99.6	0.62	2.70	135.5
Capture of producing CO ₂	11.09	86	1.08	1.25	

1) Built the Criteria of reservoir selection

With taking into account geology, fluid, field development, oil recovery ,GOR and so on, developed criteria of reservoir selection for CO_2 flooding and storage in Yanchang oilfield.

Reservoir	Reservoir number	suitable Reservoir	Not suitable Reservoir	Ratio of suitable Reservoir	Reserves (×10 ⁴ t)	suitable Reserves (×10 ⁴ t)	Not suitable Reserves (×10 ⁴ t)	Ratio of suitable Reserves
杏子川	13	12	1	0.92	10685	10495	190	0.98
靖边	15	14	1	0.93	12341	12071	270	0.98
永宁	5	4	1	0.8	25316	24727	588	0.98
西区	3	3	0	1.00	12012	12011	0	1.00
七里村	8	1	7	0.13	12691	1934	10757	0.15
瓦窑堡	16	11	5	0.69	13924	11142	2782	0.80
total	178	150	28	0.84	219138	176274	42864	0.80



2) Potential evaluation of CO₂ flooding and storage

Calculated model of storage capacity

 Ratio of CO₂ dissolve in Original oil
Ratio of CO₂ dissolve in stratum water
CO₂ storage capacity calculated under well closed

CO	2 溶解于水中	注入# ↓	地面
		O ₂ 岩石颗粒	CO, 溶解于 利 会油中 CO2 溶解于岩石骨架

2.溶解于 出原油中	num	reservoir	Reserves (10 ⁴ t)	Storage capacity(10 ⁴ t)	Enhanced recovery(%)	Utilization coefficient	Storage coefficient
	1	化子坪区-长2层	1015	265.63	6.99	0.27	0.26
200,溶解于	2	乔家洼-长6	931	209.87	4.03	0.18	0.23
剩余油中	3	永宁油区-长6	1333.69	357.41	10.83	0.40	0.27
CO2溶解于岩石骨架中	4	义吴-长4+5、长6	4754.79	1207.39	9.85	0.39	0.25
地面	5	定边延10	424	145.83	10.83	0.31	0.34
	6	郭旗西区-长61	3110	769.90	8.67	0.35	0.25
	7	直罗-埝沟-长2	240	62.42	7.43	0.29	0.26
	8	南区-湫沿山-长6	278.6	62.80	10.52	0.47	0.23
## weeping	9	吴起-油沟-长4+5	801	194.25	8.58	0.58	0.56
fficiency	10	英旺-庙湾-长8	454.41	156.29	5.51	0.16	0.34

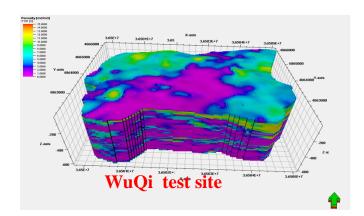
3) Reservoir engineering methods and experiments evaluation system

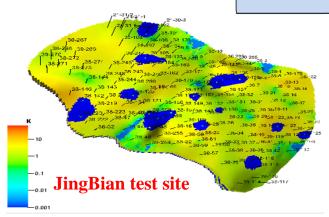
 \diamond Reservoir engineering methods for CO₂ flooding in YanChang ultra-low permeability reservoir.

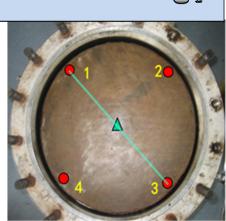
Development geology :Decrypted reservoir heterogeneous and distribution regularity in detail, built the precise reservoir geologic modeling.

Reservoir evaluation : Analyzed the characteristic of oil productivity, oil-water relationship and development.

Numerical reservoir simulation: Built 3-D geologic model of WuQi and JingBian and conducted history matching.


恒温箱


高压恒速泵


 \diamond experiments evaluation for CO₂ flooding

- heterogeneous of core under control
- overlength core for displacement

large physical simulation with radial low-permeable seepage

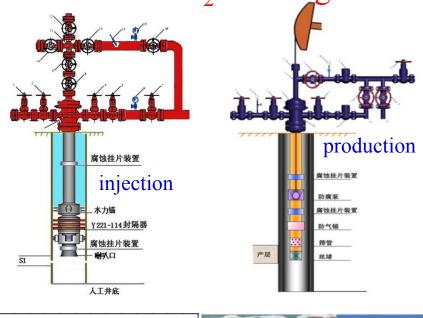
岩心夹持器

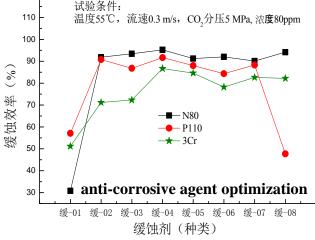
4) Matching technology and anti-corrosion for CO_2 flooding

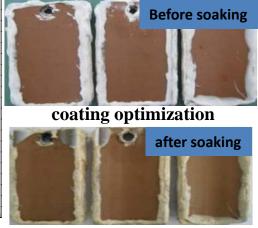
120

matching technology of injected well
Improved wellhead and injection string
Optimized oil tube and packer

 matching technology of produced well Optimized the pumping


unit,


sucker rod and oil pump study of anti-corrosion

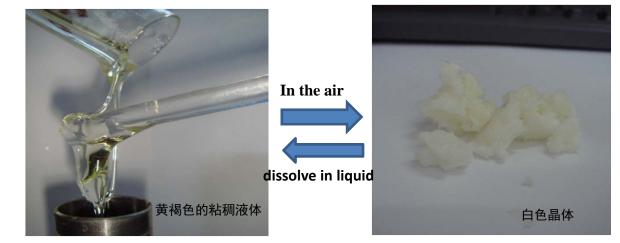

Injection well :

carbon steel + packer +inhibitor Production well:

Comprehensive anti-corrosion +carbon steel +inhibitor

5) Technology of expanding swept volume

◆stage 1—WAG

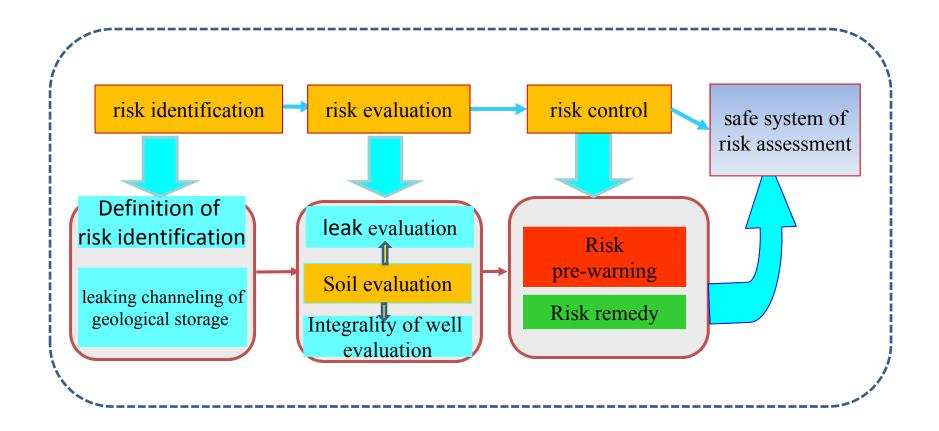

stage 2—modified starch plug channeling of fracture

characteristic: high strength and remain stable after gelling

stage 3—Small molecule amine plug channeling of high permeable formation mechanism: ease to be injected and form a salt with CO₂ reacting

modified starch after gelling

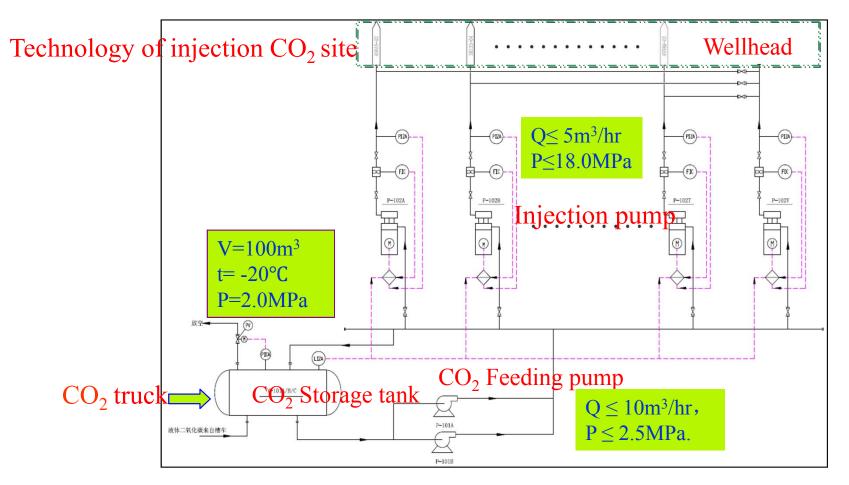
Small molecule amine



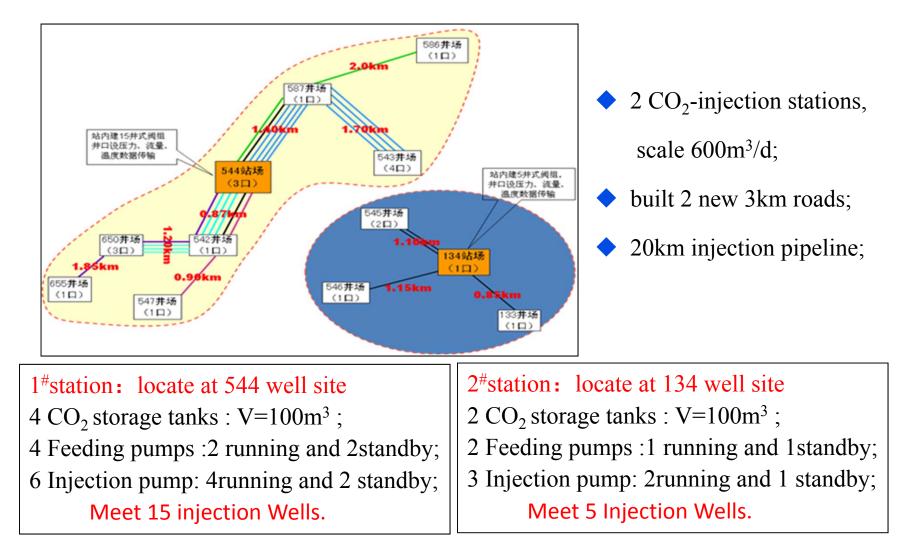
6) CO₂ safety-monitoring technology

		A · · · C		Mon	itoring Program	cycle
Injection	Well	Air: infrared Monitor CO ₂ Purity		injection well	Injection parameters(volume, pressure, temperature)	continuous
CO2 7	Cluster of Producing Oil Wells			production performance	day	
	Zone Flow	Zone Flow		_	working fluid level	month
		Surface: C	igatona		Purity of producing CO ₂	continuous
		Surface: C ₁₃	Isotope	production	pressure monitoring	continuous
	A			Î	component of crude oil	season
	entra da la dela dela	and a state of the state		well	Output profile	2 year
in the second second	wallh		ty of 2 inday		static pressure	2 year
	weim	ole . Integri	ty of 3index		water quality	month
					corrosion rate	
and the second s	Upward				tracer material	
	Flow				formation pressure	
					formation water PH	
	CO2 Plume Updip Flow				seismic surveillance	
	Formation: tracer,			Atmospheric CO ₂ Purity	Half year	
	n	ressure, wat		Surface	Soil C ₁₃	year
	P				plant growth	Half year

7) safe system of risk assessment and methodological flow of pre-warning



CO₂-EOR Surface engineering

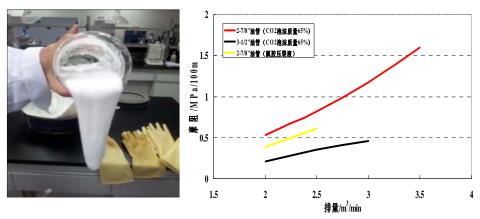

1) Technological process of portable CO₂ flooding devices and field application

Injection flow of well site : Truck → Storage tank → Feeding pump → Injection pump → Wellhead

2) Finished Overall design of CO₂ injected process in JingBian oilfield

CO₂ Fracturing

Ш types of CO₂fracturing developed by laboratory study and field test


1) CO₂ enhanced Fracturing

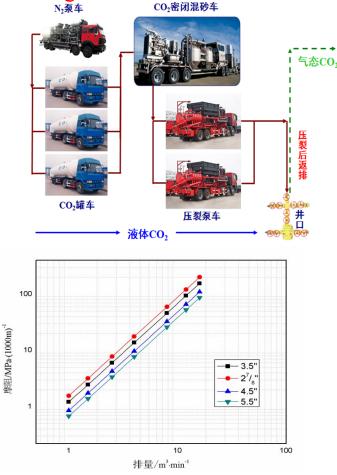
Combined with the features that liquid CO_2 are high flow-back , low damage and fit for sand fracturing, we developed CO_2 enhanced fracturing tech that use liquid CO_2 first before hydro fracture. This increased the CO_2 fracturing flow-back rate.

2) CO₂ Foam Fracturing

Taken the foam fluid (liquid CO_2 :fracturing fluid to a certain proportion with foam quality >52%) as sand carrying agent, injected into the formation. This tech is water saving and low damage to the formation.

CO₂ Fracturing

3) CO₂ Liquid Fracturing


Fracturing using pure liquid CO_2 as the sand carrying fluid. CO_2 can drained out of formation quickly and completely after fracturing with no damage.

• Liquid CO_2 pipe flow test

Evaluated first time the liquid (supercritical) CO_2 flow friction coefficient, dynamic filtration and dynamic sand carrying capability, which gives theoretical support to CO_2 dry fracturing and parameters optimization.

CO₂ dry fracturing optimization

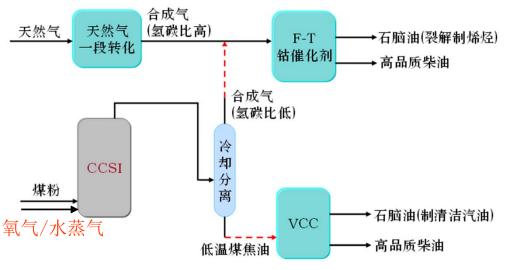
Considering the pump infusion, established the CO_2 wellbore flow friction plate and optimized dry fracturing parameters.

After many years of research and practice, Yanchang got the substantial progress on CCUS 1) Jingbian coal-to-chemicals demonstration project

By Hydrogen-Carbon complementary(more carbon than hydrogen in coal and more hydrogen than carbon in oil and gas), Yanchang petroleum carried out world's first oil-gas-coal comprehensive utilization demonstration projects. The project was put into production on 2014 July, with total investment 26.9 billion RMB, 600,000 tons polyethylene and 600,000 tons polypropylene products per year, and achieve an annual emission reduction 4,350,000 tons.

num	JingBian project	Jing Bian	International advanced level	Domestic advanced level	Compared with International level	Remark
1	methanol production(10 ⁴ t/y)	180	165.35	153.12	+8.86%	Same material
3	energy consumption(GJ/t)	37	48	50	-23.8%	
4	water consumption(m^3/t)	4.1	10	12	-59.00%	
6	CO_2 emission (10 ⁴ t/a)	285	720	720	-60.42%	4.35million ton/a
7	SO_2 emission (t/a)	634	1389	1389	-54.36%	
8	wastewater (m ³ /h)	83.4	252.9	252.9	-67.02%	Saving water 10 million ton/a
9	Solid Waste(10 ⁴ t/a)	12.8	39.82	39.82	-67.81%	landfill

2) Yulin coal-oil co-refining demonstration project


Based on the technology of heavy oil hydro cracking and coal hydro liquefaction, Yanchang petroleum developed coal-oil co-refining tech, which use residue oil, heavy oil, coal tar and low rank coal as raw materials, played a synergistic effect of coal and heavy oil in the reaction, greatly improved resources transformation efficiency and realize an annual emission reduction 1.8 million tons.

project	scale	Construction investment	Energy efficiency	CO2 emission	Water consumption
indirect coal to liquid	1million ton/a	>16 billion	40.5%	7.2ton	>10ton/ton-oil
direct coal to liquid	1million ton/a	>12 billion	50.26%	5.2ton	10ton/ton-oil
coal and oil co-refining	0.33million ton/a	≈2.5 billion	70.65%	1.1ton	3.36ton/ton-oil

3) Integrated technology of coal tar extraction and synthesis gas in coal (CCSI).

Yanchang petroleum developed it's own integrated coal tar extraction and synthesis gas in coal (CCSI) technology. At present, lab and small scale pilot experiment has been completed; a bigger 36 tons/d pilot device is being designed.

pilot plant

Profit analysis:

Processing 100 million tons of coal per year using CCSI technology:

Raw material cost: 35 billion RMB.

Product value: 236 billion RMB, in which coal tar processing output value are 96 billion RMB and synthesis gas and oil output value are 140 billion RMB.

So, resource added value up to 201 billion RMB.

4)Low-cost CO₂ capture devices on coal chemical industry

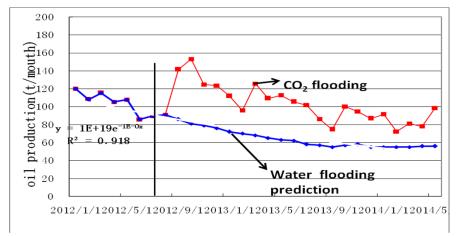
The 80000 ton/year CO₂ with food grade is produced by Shaanxi Xinhua-Xinke Gas Company, the sub-company of Yanchang Petroleum.

firstly build a set of 50,000 t/a CO_2 capture device in Yulin Coal Chemical Company , using CERI process directly to separate high purity CO_2 products from no sulfur medium voltage methanol rich liquid.

The 360000 ton/year CO_2 capture facility construction project has be started by Shaanxi Yanchang China-coal Yulin Energy Chemical Company, the project will be finished by OCT,2014

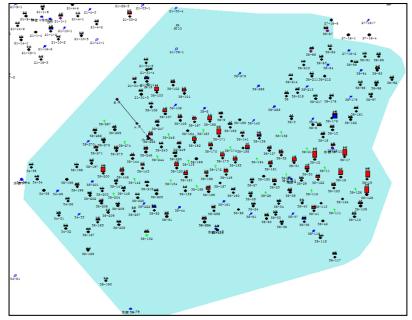
5)CO₂-EOR and storage pilot test

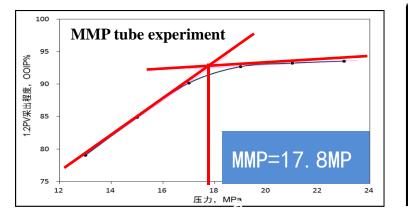
(1)CO₂-EOR and storage field test site of JingBian

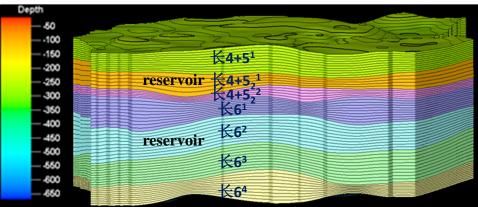

Stage 1 JingBian pilot test started in Sep 5, 2012, and had cumulatively injected 180 thousand ton liquid CO_2 with 5 well groups, comparing with estimated oil production decreasing rate by waterflooding, accumulated oil production increased by 900 tons. It will increase 16 well groups in 2015, inject CO_2 by 200 thousand ton/a, and storage CO_2 by 120 thousand ton/a.

110km

吴旗油沟区

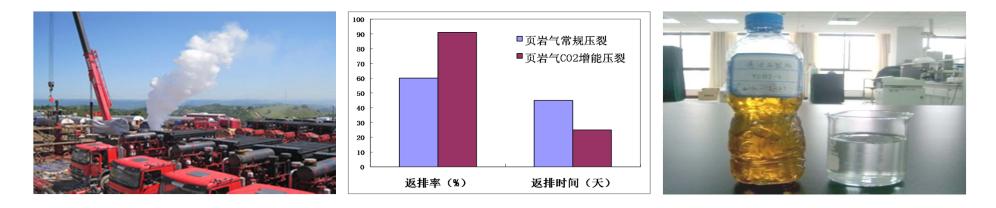

号 - Data @ Navinfo & CenNavi & 認識調調





(1)CO₂-EOR and storage field test site of WuQi

Stage 2 carried out miscible displacement of EOR in WuQi whose area is 14.8 km², and had started injection in Aug, 2014. It will increase 36 well groups in 2015, inject CO_2 by 300 thousand ton/a, and storage CO_2 by 180 thousand ton/a.



6)CO₂ fracturing field apply

(1) Shale gas wells CO_2 fracturing : CO_2 fracturing had been conducted at YanYePing3 well, with 767 m³ CO₂, 728m³ sand and 20,000m³ other fracturing fluid. Through this CO_2 enhanced fracturing, single well production and fracturing fluid flow-back rate had been increased.

(2) Natural gas wells CO_2 fracturing : For low pressure tight sandstone gas reservoir, we developed VES-CO₂ foam fracturing technology that increasing the yield obviously. Shi3 well, which applied VES-CO₂ foam fracturing, has increased daily gas production from 6400m³ to 3,8000m³, and daily open flow capacity from 2,1500m³ to 10,0000m³.

5. Planning

After accumulation of preliminary study and practice, CCUS Planning of YanChang at the end of "thirteen Five-Year Plan" is arranged as follows:

1) Work on allied chemical of coal, oil and gas for carbon reduction; develop clean utilization model of fossil fuel through hydrocarbon complementation and coal refine, reducing more than 1200 tons of carbon a year than traditional coal chemical industry. Focus on the innovation to carry out coal, oil & gas to olefins and coal & oil Co-refinery, significantly reducing carbon and improving fuel efficiency.

Coal, oil and gas comprehensive translation: Oil, gas and coal transfer to olefins and hydrogen, producing 600 thousand tons of polyethylene, 600 thousand tons of polypropylene and other products a year.

coal &oil Co-refinery: The coal-oil co-refine plant with the scale of 450 thousand tons/a was started in may 2014; The coal tar hydro-refining plant with the scale of 500 thousand tons a year was started in Oct, 2014.

5. Planning

2) Campaign of carbon capture, utilization and storage are arranged as follows:

capture-Based on the existing of 50000 tons/a CO₂ capture, carry out the pre-feasibility of CO_2 capture facilities by the scale of 3.5 million tons/a, improving total capture ability to 4 million tons/a. \diamond transport-Demo and construct a CO₂ pipeline with total length of 200–300 kilometers and delivery capacity reaches to 4 million tons/a. **flooding and storage**-Construct industrial application base of CO₂-EOR and storage with more than 600 wells, increasing oil production by 1 million tons/a, storing CO₂ by 2.4 million tons/a, enhancing oil recovery by 5%--10%, and realizing recapture and cyclic utilization of CO_2 . **fracturing**-implement CO₂ fracturing by 100 shale and natural gas wells. teamwork-Develop a managing excellence team of CCUS, which can undertake CO₂ reduction, capture, storage management and technical work, ensuring healthy and steady development of Yanchang CCUS.

5. Planning

3) next CCUS research orientation Of Yanchang

 O_2 capture, separation and transportation technology----including optimization and new process simulation of CO₂ capture from coal chemical; economic evaluation of capture-separation technology; liquid and supercritical transportation technology, separation technology of CO₂ from produced oil gas.

• Macthing technology for CO_2 storage and CO_2 -EOR----including numerical simulation of the injected CO_2 and optimization of injecting scheme.

• Monitoring for CO_2 storage and safe displacement----including monitoring of CO_2 storage and safe flooding; monitoring of gas channeling and gas flooding front; monitoring of injecting dynamic and producing dynamic.

 \diamond CO₂ fracturing technology

Policy and law for CCUS

Technical ideas which combined CCUS with EOR is one of an effective way to realize Carbon Reduction. As an important member of energy chemical industry, Yanchang petroleum is willing to enhance communication, and cooperation with the domestic and foreign counterparts, for innovation-driven and comprehensive utilization of resources. It will make new greater contributions for efficient, clean and low-carbon utilization of global petrochemical energy.

Thanks for your advices