

Linde Overview & Focus on CCUS Pathways

PCC Technology & Update on DOE Project

Current CCUS Activities & Focus Areas

The Linde Group Overview

Founded 1879

> ~\$20 billion Sales

Employees ~62,000

>100 **Countries**

Linde Engineering Technology-focused

Global #1

Natural Gas Global #3

Global #2

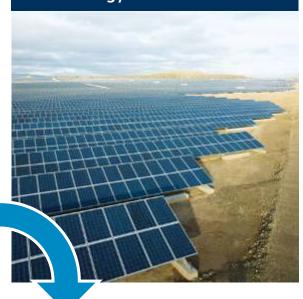
Hydrogen/Syn Gas

<u>Linde Gas - Tonnage</u> **World-class operations**

>70 plants

ASU Tonnage Plants

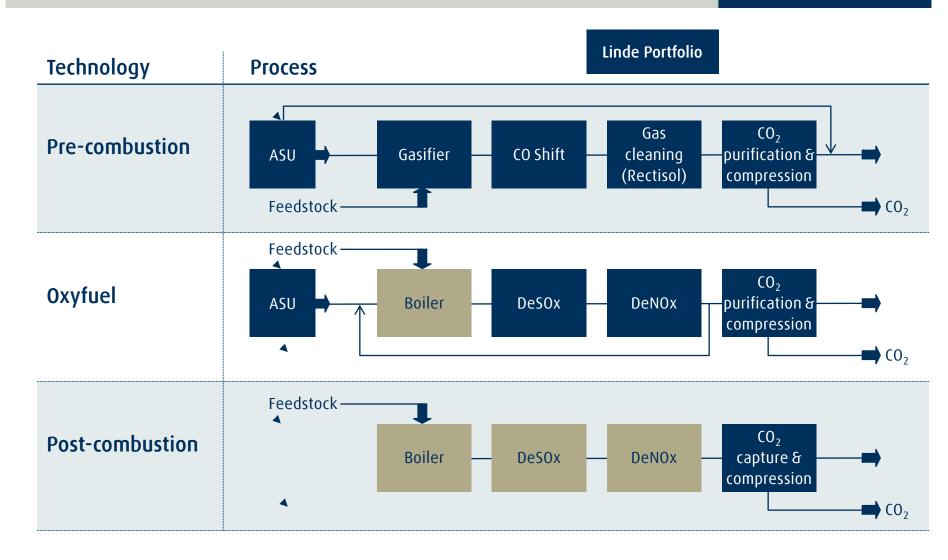
Growth opportunities


Product portfolio serving mega trends

Growth markets

Clean energy

Healthcare



Leveraging Gases & Engineering business synergies

Linde pursuing all three CCS pathways

Linde Overview & Focus on CCUS Pathways

PCC Technology & Update on DOE Project

Current CCUS Activities & Focus Areas

Project Objectives

Overall Objective

Demonstrate Linde-BASF post combustion capture technology by incorporating BASF's amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

- Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
- Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
- Implement parametric tests to demonstrate the achievement of target performance using data analysis
- Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application

DE-FE0007453 Project Participants

Partner/	Lead contact(s)	Key Role(s)
Organization		
DOE-NETL	Andrew P. Jones, Project Manager	-Funding & Sponsorship
Linde LLC	Krish Krishnamurthy, PI Stevan Jovanovic, Technical Lead	-Prime contract -Overall program management -Operations and testing
BASF	Iven Clausen (BASF SE) Sean Rigby (BASF Corp)	-OASE® blue technology owner -Basic design -Solvent supply and analysis
EPRI	Richard Rhudy	-Techno-economics review -Independent validation of test analysis and results
Southern Co./NCCC	Frank Morton Michael England	-NCCC Host site (Wilsonville, AL) -Infrastructure and utilities for pilot plant build and operations
Linde Engineering, Dresden	Torsten Stoffregen Harald Kober	-Basic engineering -Support for commissioning -Operations and testing
SFPC (Linde Eng)	Lazar Kogan Keith Christian	-Detailed engineering -Procurement and installation

Project schedule by budget period and task

Task #	TITLE	П	2	2012				201	013 20°			2014)14		2015				
		Q1	Q2	Q3	3 Q4	Q	1 Q	2	Q3	Q4	Q1	Q2	2 Q	3 Q	4 Q1	Q2	Q3	3 Q4	,
1	Program Management																		
Budget I	Period 1																		
2	Techno-Economic Evaluation																		
3	Pilot plant optimization and basic design																		
4	Pilot plant system design and engineering																		
5	Pilot plant cost and safety analysis																		
	Go - No Go DECISION																		
Budget I	Period 2																		
6	Supply of plant equipment and materials		Cu	rrent	stat	US													
7	Plant construction and commissioning																		
	Mechanical completion of pilot plant																		
Budget I	Period 3																		
8	Start-up and initial operation																		
9	Parametric testing																		
10	Long duration continuous operation																		
11	Final economic analysis and commercialization plan																		
	Project Closeout																		

Project progress and accomplishments by task (Budget Period 1)

Task#	Task Description	Key Objectives	Accomplishments
1	Program Management	Complete project management plan and implement to agreed cost and schedule.	- Project kick-off meeting held - Updated project management plan completed
2	Techno-economic evaluation	Complete techno-economic analysis on a 550 MWe coalfired power plant incorporating Linde-BASF PCC technology.	-Techno-economic assessment completed and presented to DOE-NETL - Benefits of technology demonstrated
3	Pilot plant optimization and basic design	Define pilot plant design basis and the key features incorporated. Complete basic design and engineering.	-Design basis document completed and pilot plant features selected Basic design and engineering completed.
4	Pilot plant design and engineering	Complete detailed design and engineering of the pilot plant.	- Detailed engineering nearing completion (90% model)
5	Pilot plant cost and safety analysis	Complete preliminary environment, health and safety assessment for the pilot plant	- NEPA document completed with NCCC and DOE-NETL approval obtained -Preliminary EH&S topical report completed - Vendor packages developed and firm cost estimates obtained

Linde-BASF experience in large scale carbon capture

CO₂ capture in NG processing: Re-injection Project - Hammerfest

World's first industrial project to deliver CO₂ separated onshore from the well-stream back offshore for re-injection into a reservoir

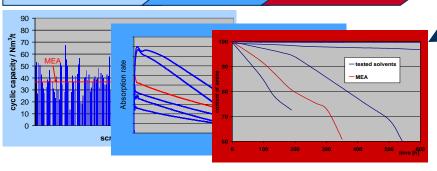
- Partnership with StatoilHydro Petroleum
- Melkoya island near the town of Hammerfest, Norway
- —CO₂ sequestration and re-injection integral part of the Hammerfest LNG project. Linde performed design, EPC and commissioning
- —One dedicated well for CO₂ storage in a sandstone formation sealed by shale cap.
- Re-injection started in April 2008
- BASF's OASE® purple process used in CO₂
 capture

700,000 tpa CO₂ capture and re-injection (part of world scale LNG project, Snøhvit, Norway)

11 11

Post combustion CO₂ capture: Challenges compared to CO₂ removal in NG/LNG plants

	NG/LNG	Flue gas
Pressure	50 – 100 bars	1 bara
CO ₂ partial pressure	1 – 40 bars	30 – 150 mbars
Flowrate	up to 60 mio scf/hr	up to 120 mio scf/hr
Gas composition	CH ₄ , C ₂ H ₆ ,, CO ₂ , H ₂ S, COS, C _x H _y ,S, H ₂ O	N ₂ , O ₂ , H ₂ O, CO ₂ , (SO _x) NO _x
Treated gas specification	50 ppm – 2 % CO ₂ S < 4 – 10 ppm	CO ₂ removal rate (90 %) low amine emissions
Energy efficiency	not a key issue	of highest priority 7 → 7-10% points

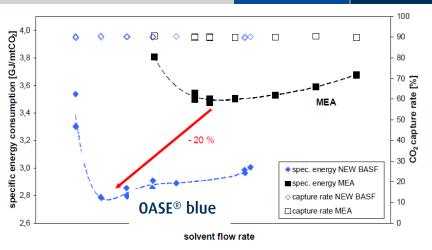

- ☐ large volume flows @ low pressure
- **□** solvent stability
- ☐ emissions of solvent
- □ overall power plant efficiency losses

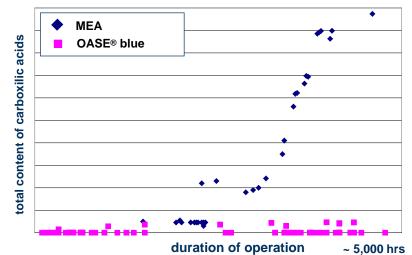
BASF OASE® blue Technology Development Designed for PCC Applications

Fundamental Lab Scale R&D: Advanced Solvents Screening, Development, Optimization

BASF Miniplant, Ludwigshafen, Germany: Solvent Performance Verification

0.45 MWe PCC Pilot,
Niederaussem, Germany:
Preliminary Process
Optimization


Niederaussem* pilot plant key results

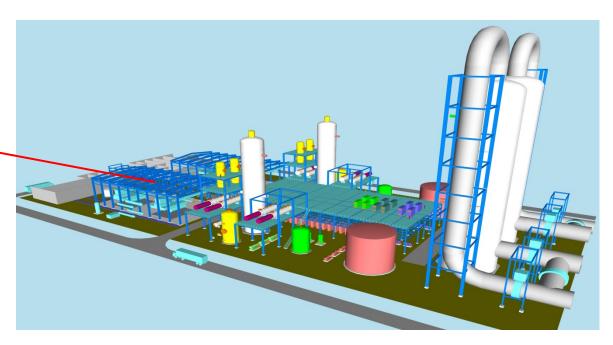


Fuß Acknowledgement: * Pilot project partner RWE

>90% carbon capture rate achieved

>20% improvement in specific energy compared to MEA New BASF solvent is very stable compared to MEA

Solutions for Large Scale PCC Plant (1100 Mw_{el} Power) Design challenges


Optimizing CAPEX by reduced number of trains to handle 18,000 tpd CO₂

- 2 process trains selected

- reduced plot space

Compressor section two lines per train

→flexible turn down operation

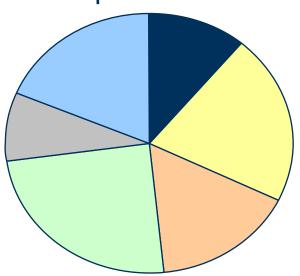
Lower number of trains results in bigger size of components, e.g.

- Absorption column: diameter ca.18 m, height ca. 75 m \rightarrow on site fabrication required

Pipes ducts and valves: diameters up to 7 meters

- Plot: ca. 100 m x 260 m

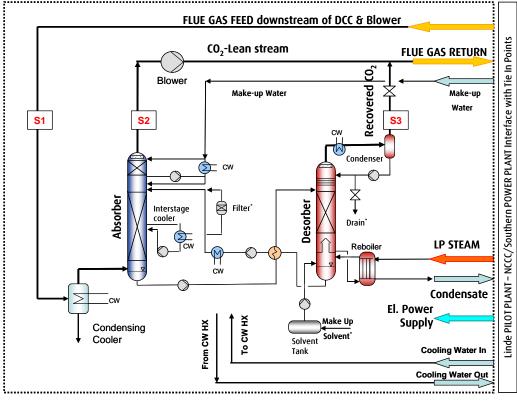
Concepts for a Large Scale PCC Plant Key elements of plant costs


Main challenges

- Large equipment size requires new concepts
- Required plot area is very significant
- Alternative materials need to be assessed
- New equipment arrangements needed
- Field fabrication
- Large pipe and duct

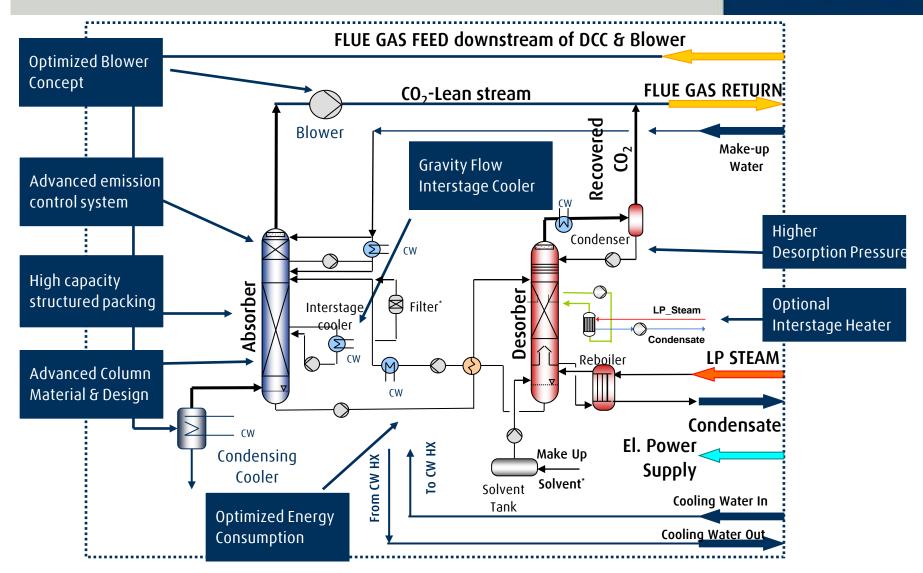
Linde studies to address challenges

- Scaling to a very large single train
- Optimize equipment arrangement (flue gas blower, pre-cooler, absorption columns sump etc)
- Develop new column construction materials
- Optimize machinery options


Total plant cost distribution

- Engineering and supervision
- ☐ Equipment incl. columns (w/o blowers & compressors)
- Blowers & compressors
- ☐ Bulk Material
- □ Civil
- Construction

Simplified process flow diagram of the 1MWe pilot plant

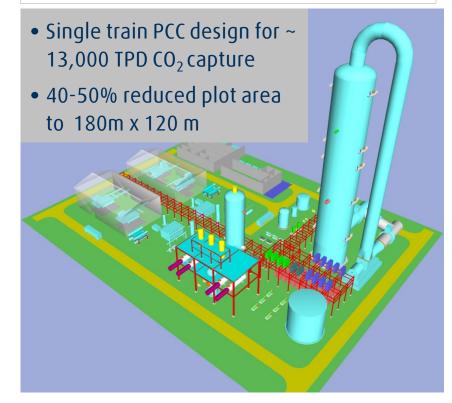


	<u> </u>	
Utilities for	30_TPD Pilot I	Plant
LP Steam	lb/hr	3,600
El. Power	kW	190
Cooling Water	GPM	570
Makeup water	GPM	0.3

Stream		S1	S2	S3
		Feed gas	CO2 Lean	CO2 Rich
Temperature	F	123.8	114.1	104.0
Pressure	psia	14.9	13.8	47.9
H2O	vol%	13.30	9.49	2.31
CO2	vol%	12.14	1.45	97.67
СО	vol%	0.00	0.00	0.00
N2	vol%	69.36	82.85	0.01
O2	vol%	5.20	6.21	0.00
Flow rate (total)	mscf/hr	217.4	182.0	24.3
Flow rate (total)	lb/hr	16,517	13,209	2,782
CO2 Recovered	TPD			30.0

Linde-BASF advanced PCC plant design*

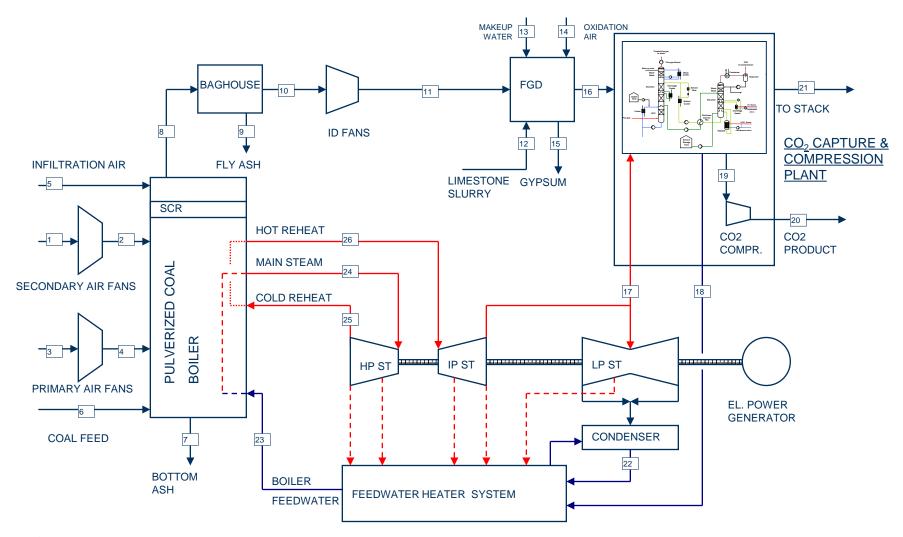
Techno-Economic Assessment: Linde-BASF PCC Plant Design for 550 MWe PC Power Plant


Specifications and Design Basis

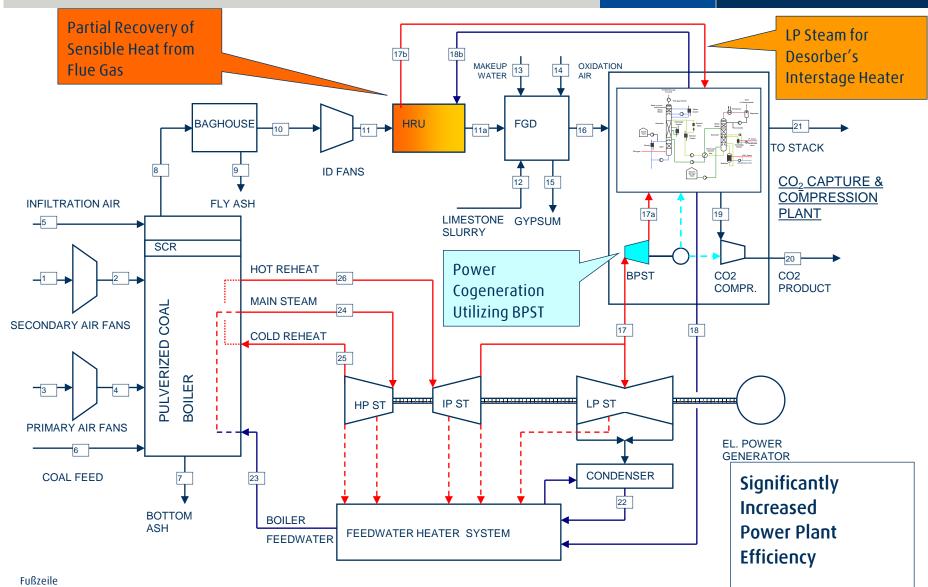
identical to DOE/NETL Report 2007/1281
as per DE-FOA-0000403 requirements

- Bituminous Illinois #6 Coal Characteristics
- Site Characteristics and Ambient Conditions
- Pulverized Coal Boiler Design
- Subcritical Steam Turbine Design
- Steam Cycle Conditions
- Environmental Controls and Performance
- Balance of Plant
- Economic Assumptions and Methodology

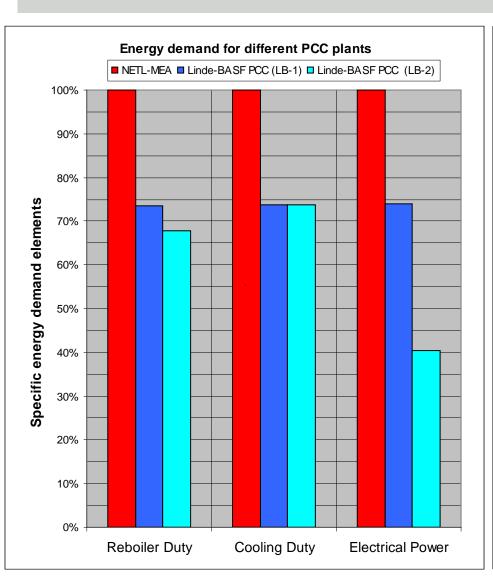
UniSim Design Suite R390, integrated with

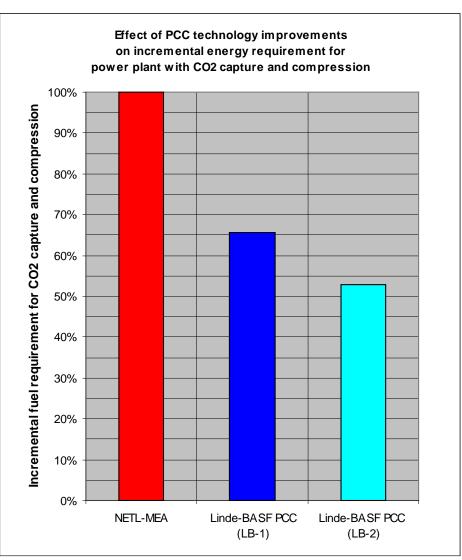

- Brian Research & Engineering ProMax® software for PCC parametric optimization
- BASF's proprietary package for rigorous solvent performance predictions

PCC – Power Plant Typical Process Integration Option (LB-1)

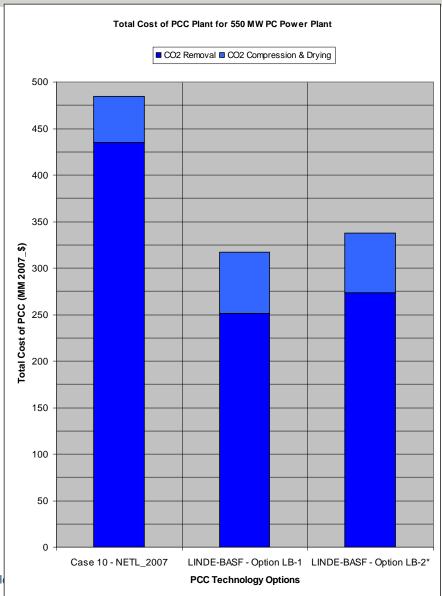


PCC – Power Plant Advanced Process Integration Option (LB-2)

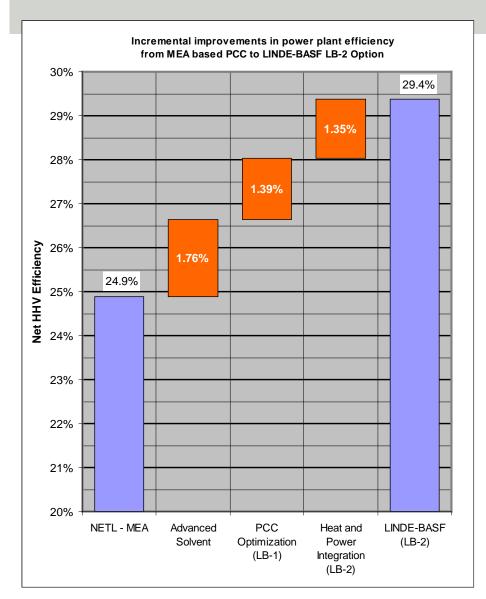


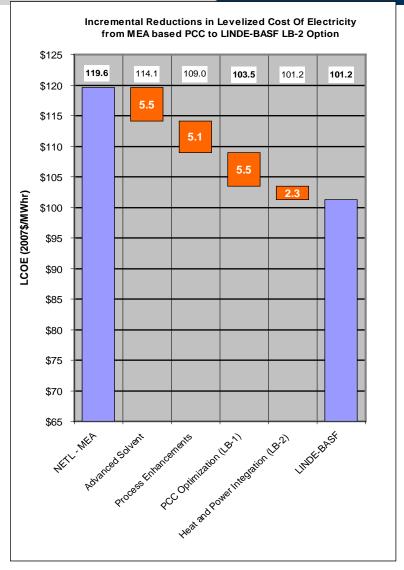


Comparative PCC Performance Results Linde-BASF vs Reference DOE/NETL Case*



Total PCC Plant Cost

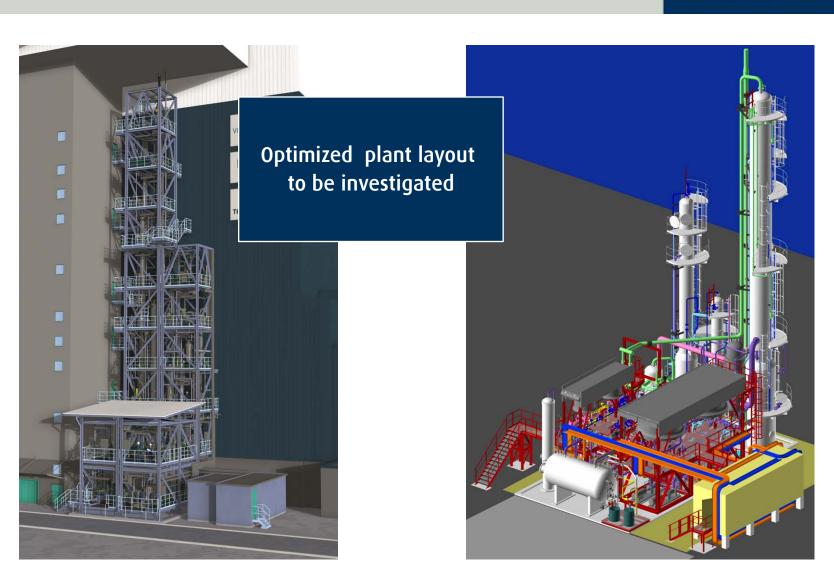



Significantly reduced total PCC plant Cost relative to DOE/NETL 2007 Reference Case #10 due to

- 1. Reduced coal combustion (CO2 production) for 11.1% (LB-1) or 15.2% (LB-2)
- 2. Single train PCC design
- 3. Optimized PCC plant design

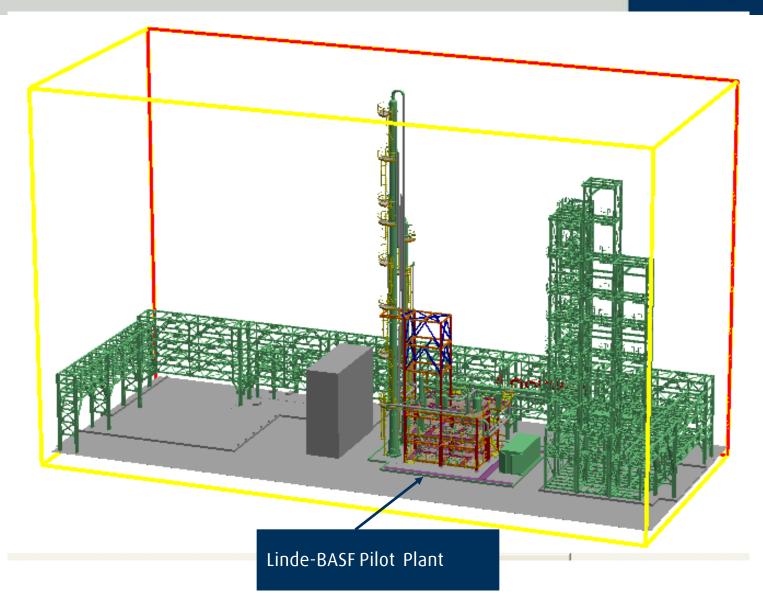
Power plant efficiency improvements and LCOE reductions with Linde-BASF PCC technology

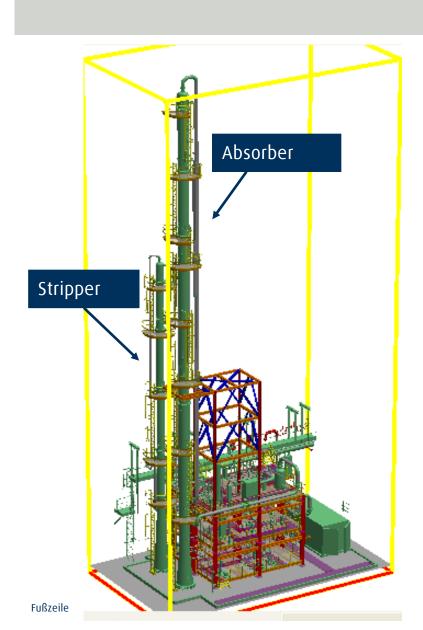
Detailed engineering timeline: Key dates



Jan-12	Feb-12	Mar-12	Apr-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12
Gail 12	10012	Widi 12	Αρί 12	Way 12	odii 12	our 12	Aug 12	ОСР 12	300 12	1101 12	
			- Design re	eview							
			- PSR 1 an								
			- Hazop								
						- 60% mod	el review				
Evaluate	optimum	layout				- Equipme	nt packag	es			
										- Vendor s	election
				- 3-D mode	el					- Cost com	pilation
				- 30% mod	el review					- 90% mod	el review
				- Update F	%ID (Hazo	p actions)				- PSR 3	
								Modulo	nackada		
								- Module - RFQ to v			

PSR: Process Safety review; P&ID: Process and Instrumentation Diagrams; RFQ: Request for quotes; Hazop: Hazard and operability study


Task 3: Design Selection Pilot Plant Layout


3D Model of NCCC site with Linde-BASF Pilot Plant

3D Model of Linde-BASF 1 MWe Pilot Plant

3D Model of Linde-BASF Pilot Plant modular design (3 level structure)

Key design and engineering features and decisions

- Joint design basis development (Linde and SCS/NCCC) for the nominal 1 MWe pilot plant
- Leveraged Niederaussem pilot plant experience for early design selection decision on target solvent, pilot plant preliminary sizing, process control and analytical sampling and measurement
- Targeted 1 m absorber diameter size, leading to testing capability to 30 TPD CO2 or 1.5 MWe equivalent – confirmed utility availability with upside margins
- Integrated modeling approach for detailed engineering start with the existing NCCC facility model with tie-in points defined and integrated into pilot plant model to avoid conflicts in build phase
- Equipment and module packages sent to multiple vendors and vendor selection performed based on cost, capability and eagerness for involvement in project
- Concrete column sections evaluated but determined to impact project timeline significantly currently allowing for swapping the SS bottom section of absorber with concrete section.
- Concrete column section engineering design to be completed in BP2 and cost proposal made during the continuation request for BP3.
- Current pilot plant equipment procurement and build schedule (BP2) requires BP2 timeframe extension by 3-months. Will explore improving the schedule.

Project progress: Key Project Milestones (Budget Period 1) Status

Budget Period 1 (Dec. 1, 2011 - Feb. 28, 2013)

- Submit project management plan $(03/09/2012)\sqrt{}$
- Conduct kick-off meeting with DOE-NETL (11/15/2011) $\sqrt{}$
- Complete initial techno-economic analysis on a 550 MWel power plant $(05/04/2012)\sqrt{}$
- Complete basic design and engineering of a 1 MWe pilot plant to be tested at NCCC (06/20/2012) $\sqrt{}$
- Execute host site agreement (10/31/2012) completed 01/09/2013 $\sqrt{}$
- Complete initial EH&S assessment (10/31/2012) Completed 12/14/2012 $\sqrt{}$
- Complete detailed pilot plant engineering and cost analyis for the 1 MWe pilot plant to be tested at NCCC (01/31/2013) Planned for completion by 01/31/2013

Status against Budget Period 1 decision point success criteria

Decision Point	Basis for Decision/Success Criteria	Status
	Successful completion of all work proposed in Budget Period 1	On track
	Demonstrate a 10% reduction in capital costs with Linde-BASF CO2 capture process	30.5 to 34.7% for PCC and 16.6 to 17.3% for integrated power plant
Completion of	Demonstrate a LCOE increase of less than 65% over the baseline	62.2% and 58.8% for 2 options considered
Budget Period 1	Submission of an Executed Host Site Agreement	Completed
	Submission of a Topical Report – Initial Techno-Economic Analysis	Completed
	Submission of a Topical Report – Initial EH&S Assessment	Submitted
	Submission of a Topical Report – Detailed Pilot Plant Engineering and Cost Analysis	By 1/31/2013
	Submission and approval of a Continuation Application in accordance with the terms and conditions of the award	Presentation to DOE- NETL on Jan 14, 2013

Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Linde Overview & Focus on CCUS Pathways PCC Technology & Update on DOE Project

CCUS Activities & Focus Areas

Linde Focus Areas

Key Goal

- Develop repeatable commercial-scale projects
- Continue focus on technology advancement

Challenges

- Carbon value, lack of planning certainty
- Risk-sharing & value-sharing of emitter, capturer, user

Technology Development

- Pre-Combustion: Rectisol advancements, improved integration
- Post-Combustion: commercial-scale demo, 3rd gen technology
- Oxy-Fuel: Advanced HP oxy-fuel

Project Activities

- Summit's Texas Clean Energy Project (TCEP) –
 Odessa, TX
- UK DECC Projects: including oxy-fuel & precombustion
- Various EOR-driven opportunities in US and abroad including NG-based CCUS

Industry & Government Collaboration

- Coal Utilization Research Council (CURC)
- National Enhanced Oil Recovery Initiative (NEORI)

Commercial Areas of Focus

- "Bankable" arrangements
- Risk-sharing models

CCUS - It can be done!!

< 20% of people attempting to climb Mount Everest are successful in reaching the summit

... but some do!

How can we get CCUS projects over the finish line with today's "carbon valuation"??

Continued technology advancement, creative business models & rational risk-sharing