

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Future Role of Natural Gas Fired Power Generation with CCS

US Energy Association

December 16, 2014

Revis W. James Director, Generation R&D

EPRI Overview

Mission

 Assure long-term availability of affordable, reliable, a environmentally responsible electricity through resear development and demonstration.

Key Facts

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- ~\$380M/year funding; international funding ~25%
- Non-profit 501(c)(3), independent, collaborative R&D institution

Power Sector Policy Drivers

- CO₂ emissions reduction
- Existing limits(e.g. SO_x, NO_x, Hg, thermal pollution)
- Water availability
- Environmental impact of renewables (e.g. avian, bats)
- Policy-driven technology choices (e.g. renewables)

Power Sector Technical Drivers

- Meet demand
- Maintain reliability
- Minimize cost
- Recognize long lead times for technology deployment.
- Hedge technology risks

Natural Gas in the Power Sector

- Electric sector gas consumption
 - 2012: electric sector gas consumption ~36% of all US consumption
 - 2014 EIA AEO projection for 2040: electric sector gas consumption ~34% of total
- Growth in NG consumption in electric sector
 - 2011-2012: increased 22%
 - 2014 EIA AEO: projects 8% growth in electric sector gas consumption (2012-2040)
- Generation share
 - 2011: 21% of total generation
 - 2011-2012: 24% increase
 - 2012: 27% of total generation (196 TWh)
 - 2040: 31% of total generation

Natural Gas - Strengths

- Low NG prices make CTCCs attractive
 - breakpoint with coal regionally dependent, but generally in \$4-\$6/mmBtu range
- Reduced fossil plant emissions, including CO₂
- More operational flexibility compared to coal units.
- Smaller capital outlay for new capacity, can be constructed more quickly, lower water requirements compared to coal/nuclear
 - Often favored by PUCs
- Delays need to invest in more expensive options (e.g. coal, nuclear)
 - Gives lead time to develop more advanced technologies for other generation technologies.

Natural Gas – Challenges

- Dynamic combustion control
 - Balancing efficient operations w/emissions control
 - Harder if cycling
- CTCC cycling/HRSG reliability
 - Renewable portfolio standards + increasing role of demand response, end-use efficiency => increased cycling of CTCCs => performance, reliability issues
 - Heat Recovery Steam Generators (HRSGs) particularly important, problematic
- Assurance of supply, pricing
 - Potential growth of opposition to fracking.
 - Pipeline infrastructure expansion.
 - Pipeline operations and fluctuating power sector demand.
- Hedging against future high NG prices, price volatility, availability
 - Substantially increased demand for natural gas from the power sector could significantly drive prices up.
 - ~55% of electricity production costs for CTCCs = fuel cost => financial exposure in generation portfolio.

Trending Toward Higher Efficiency, Flexibility Improved Metallurgy, Coatings, Cooling, Aerodynamics, Size

Efficiency versus Temperature

Turbine Rotor Inlet Temperature, F

R&D Focus Areas

Improved Efficiency, Flexibility, and Durability

- Fuel Flexibility
 - LNG and Natural Gas Variability
 - Lower NO_x and CO Emissions/Combustion Dynamics
- Operational Flexibility
 - Fast Startup and Shutdown
 - Frequent Cycling (Many Starts Per Year)
 - Part Load Efficiency and Low Load Emissions
 - Load Following and Frequency Control
- System/Component Durability
 - Preventive Maintenance
 - Repair and Replacement Costs
 - Forced/Unscheduled Maintenance, Catastrophic Failures

R&D Focus – CTCC + CCS

- Evaluate the performance and cost impact of applying post-combustion capture (PCC) to today's NGCC
- Cases considered:
 - Reference 556-MWe (Net) base NGCC plant
 - Retrofit post combustion plant to base plant
 - New build NGCC plant designed with capture
 - New build NGCC plant designed with capture + exhaust gas recycle (EGR).
- PCC technology = advanced amine solvent (Aker Clean Carbon)
- Conclusions
 - Retrofitting is more expensive than integrated design.
 - Key sensitivities
 - Engineering, procurement & construction (EPC) contingency
 - Unit capacity factor
 - Overall levelized cost of electricity more sensitive to fuel cost than to avoided CO₂ cost

Total Plant Costs *NGCC with and without CO*₂ *Capture*

556-MWe (Net) NGCC Base Plant with PCC and Exhaust Gas Recycle

Overview from Electricity Sector Perspective

Environmental Policies		
– CO ₂ policy		 long-term problem
– RPS/RES	\Rightarrow	 good (backup); bad (competes)
– Ash		
 Env. impacts/renewables 		
– Water impacts		
– HAPS		
 Shale gas/hydro-fracking 	┛	 potential environmental issues
Hedge technology risk	\Rightarrow	 good (diversity); bad (too much)
Capital cost/long development lead times	1	
 Long-term demand growth 	↓	 expensive bulk energy
 Load curve/capacity needs 	1	
Grid reliability	1	
Minimizing electricity costs	↓	 long term price volatility

Key Takeaways

- NG is a key part of electricity sector, but drivers are diverse, creating both pros and cons for NG
- Cycling will become a larger issue with renewables, DG, end-use load mgmt. and efficiency.
- NGCC technology improving in efficiency, flexibility
- R&D issues associated with long-term reliability, maintainability.
- CCS for NGCC likely to be necessary in future.
- Diversified generation technology portfolio provides reliability, economic efficiency, operational flexibility, hedge against uncertainty in gas supply and cost.

Together...Shaping the Future of Electricity