15th SINO-US Oil&Gas Industry Forum

Measurements and Methods in CCS & EOR

By:Zhang Xiansong

张贤松

CNOOC Research Institute

China National Key Lab of Offshore Oil Exploitation

Sep. 2015, Chongqing

1. CCS overview

- 2. Integrating CO2-EOR and CO2 Storage
- CO2-EOR
- Improved methods
- **3.Application & Prospect**
- Case
- Prospect
- 4. Summary & Suggestions

What is CCS?

 Carbon Capture and Storage (or Sequestration) is a broad term for technologies involving three main steps:

capturing the CO2 from the combustion of fossil fuels at stationary sources

transporting it to the storage site and,

storing it underground in geological formations.

CCS Overview

- Capture
 - Power plants
 - NG treatment
 - Oil refineries
- Transportation
 - Pipelines
 - Ships
- Sequestration
 - Geological formations (underground)
 - Ocean

CCS Overview

OSystems

- O Post-combustion
- O Pre-combustion
- Oxy-fuel
- Industrial processes (e.g. NG sweetening)

OSeparation technologies

- Solvents aqueous amines and salts
- Membranes polymeric
- Solid sorbents Lime, zeolite, activated carbon
- Cryogenic processes Liquefaction/distillation

Carbon Sequestration

Comparison of CO₂ geological storage methods

Storage Methods	Advantages	Disadvantage		
EOR in Oil fields	Mature technology, Extra economic return, Safe	Complex process; Gas injection volume and position lin Safety of abandoned wells in oil field Leak in fracture in the oil field.		
EGR in Gas fields	Extra economic return; Large storage capacity. Safe.	Complex process; Lack of experience; Gas mixing and separation costs; Safety of the original wells.		
EGR in Coal bed gas fields	Enhanced CH4 recovery, Near to CO2 resource (Power Plant).	Complex process; Low CO2 injection ability; Gas mixing and separation costs; Lack of experience		
Storage in deep aquifer	Simple operating process; Large storage capacity.	No economic return; Long term security not confirmed; Lack of experience		

- OBig Storage in oil reservoirs (depleted and EOR), natural formations, ocean storage
- OWill it leak? Not likely models suggest 99% containment
- O Existing reservoir data can be used to estimate storage potential and address (water) concerns
- **ONo groundwater contamination (salt?)**

CO₂ Flood

Proven EOR process

Recover additional 15%– 25% IOIP

Extend production life by over 15 – 20 years

Reduce emissions of CO₂

Outline

- 1. CCS overview
- 2. Integrating CO2-EOR and CO2 Storage
- CO2-EOR
- Improved methods
- **3.Application & Prospect**
- Case
- Prospect
- 4. Summary & Suggestions

Graphic representation of CO₂ injection in reservoir for enhanced oil recovery (EOR)

Types of CO2-EOR

Miscible CO₂ Flooding (MMP)
Immiscible CO₂ Flooding
Immiscible CO₂ Huff & Puff

Reservoir conditions of CO₂-EOR Projects (USA)

CO₂-EOR prefer : sandstone, limestone, dolomite reservoirs with low perm. light oil , etc.

Relationship between reservoir depth and API in CO2-EOR projects

The depth of most CO₂ Projects were among $1000 \sim 3000$, most CO₂ miscible Projects were used in reservoirs with oil API > 30, most immiscible projects used in shallow reservoirs (<2000m), and higher API (< 30).

- **Oil viscosity reduction**
- **Oil swelling**
- **OVaporization of oil (CO₂ extraction)**
- **OInterfacial tension reduction**
- **OMiscibility effects**

Feasibility research of CO2-EOR Projects

- **OMinimum miscibility pressure (MMP)**
- **OImpurity in CO₂**
- **OCO**₂ injection strategy
- **OWettability change and acidic effect**
- **OWater blocking of oil**
- **OViscous instabilities, gravity segregation**
- **O**Heterogeneity

CO2 flooding front early breakthrough

water & gas injection alternately

Outline

- 1. CCS overview
- 2. Integrating CO2-EOR and CO2 Storage
- CO2-EOR
- Improved methods
- **3.Application & Prospect**
- Case history
- Prospect
- 4. Summary & Suggestions

Survey of CO2 EOR technologies application

Most CO2-EOR Projects are in North America;

CO2Projects in USA are mainly Miscible;

Most projects (61, 74% of total) are carried out after water flooding;

Recovery increased by about8~15%.

Field application analysis:

	Successful	Hopeful	Too early	Failed	Total
Number	56	16	5	5	82
Percent	68%	20%	6%	6%	100%

¹²22

—CO2 from the United States by pipeline of 325 km to the oil field, over 5000 tons of CO2 daily (95% of CO2, the input pressure 18 Mpa)

—All produced CO2 i reinjection, accounting for 33% of the daily dosage

After injection CO₂ 25years, EOR13-19%

CO2-EOR Pilot in Daqing Oilfield

Time: From 1990 to1995, two pilots of immiscible CO2 in different layers.

Developing Mode: Early-stage water floodin Water alternative CO2 injection. CO2 injected volume 0.2PV.

CO₂ source : By-Product of Daqing oil refinery purity 96%.

Performance: Recovery increased by 6%,

Research of CNOOC

Research of CNOOC

Estimation of CO2 before breakthrough :

The CO₂ storage is about 23.3 × 104t in target field (OOIP 44.89 × 10⁴t).
 According to above calculation result, the WZ12-1 field (with OOIP 2425 × 10⁴t and 7.4 Km²) has CO2 storage capacity of 1258.7 × 10⁴t.

 There are many CCS projects being announced worldwide. This database also contains dormant projects; those which have had no news on for multiple years but which have not been publicly cancelled.

Announced Projects

	10			
Project Name	Location	Leader	Size	Further information
CarbonNet	Australia	Victorian Government	Network	
South West Hub	Australia	Western Australian Dep. Mines and Petroleum	2.5 Mt/yr	
Lula	Brazil	Petrobras	0.7 Mt/Yr	
Shand	Canada	SaskPower & Hitachi	Unknown	
Shanxi	China	Shanxi Energy Group	350 MW	
Qilu Petrochemical CCS	China	Sinopec	0.5 Mt/yr	The FEED study has been completed and is awaiting approval by Sinopec. Anticipated start date is 2016. CO2 is to be used for EOR.
YiHe Coal plant	China	China Energy & Seamwell	1000 MW	
Ledvice	Czech Republic	CEZ	660 MW	Retrofit post combustion plant. Financingproposed
Hodonin	Czech Republic	CEZ	660 MW	
Hassyan Clean Coal	Dubai	DEWA	1200 MW	
Nord	France	Total	N/A	
Saline Joinche	Italy	SEI	2*660 MW	
Eemshaven RWE	Netherlands	RWE	0.19 Mt/yr	
	Norway	Sargas	2.6 Mt/yr	
Turceni	Romania	Turceni	1.5 Mt/yr	2010) Project is on hold as more funding is secured for FEED and storage appraisal
Caledonia Clean Energy Project	UK	Summit Power	N/A	Summit Power, National Grid and Petrofac Team Up on DECC Carbon-Capture Programme in UK (March 2010)
CO2 solutions and EERC	USA	CO2 Solutions and EERC	N/A	CO2 Solutions Announces Testing Program with Energy & Environmental Research Center (EERC) (September 2014)
Medicine Bow	USA	Sinopec	2.5 Mt/yr	Medicine Bowl Project presentation (2011) Coal to liquids facility with CO2 for EOR. Start 2018
Quintana	USA	Great Northern Power Development	2.1 Mt/yr	Quintana South Heart Project 2.1 MT/Yr, IGCC pre-combustion capture. New Build. Start in 2018

- While CCS needs the U to make CCUS, CO2-EOR also needs the CO2 from CCUS
- Growth in production from CO2-EOR is now limited by the availability of reliable, affordable CO2.
- If increased volumes of CO2 do not result from CCUS, then these benefits from CO2-EOR will not be realized.
- The Global CCS Institute reports 60 large-scale integrated projects (LSIPs) at various stages of the asset life cycle
- Of the projects in operation, under construction, or nearing final investment decisions, 74% (20 of 27) are using or intend to use captured CO2 for CO2-EOR.

Region	Technical CO ₂ -EOR Oil Recovery (Billion Barrels)	Associated CO ₂ Demand/Storage Capacity (Billion Metric Tons)	
1. Asia Pacific	47	13	
2. C. & S. America	93	27	
3. Europe	41	12	
4. FSU	232	66	
5. M. East/N. Africa	595	170	
6. NA/Other	38	11	
7. NA/U.S.	177	51	
8. S. Africa/Antarctica	74	21	
TOTAL	1,297	370	

* Includes potential from discovered and undiscovered fields, but not future growth of discovered fields.

Source: IEA GHG Programme/Advanced Resources International (2009)

- 1. Advanced reservoir characterization (to map residual oil and reservoir heterogeneity)
- 2. Combination horizontal/vertical wells plus "smart" well technology (to better contact bypassed oil)
- 3. CO2 mobility and flow path control agents (to improve reservoir conformance)
- 4. Increased volumes of efficiently targeted CO2 (to improve oil recovery efficiency)
- 5. Near-miscible CO2-EOR technology (to expand CO2-EOR to additional oil reservoirs)
- 6. Advanced reservoir surveillance and diagnostics technology (to "see and steer" the CO2 flood)

	"Next Generation"	"Second Generation" CO ₂ -EOR & Incremental Storage		
	CO ₂ -EOR	CO ₂ -EOR	Inc. Storage	Total
CO ₂ Storage (million metric tons)	32	76	33	109
Storage Capacity Utilization	22%	53%	23%	76%
Oil Recovery (million barrels)	92	180	-	180
% Carbon Neutral*	74%	90%	-	129%

- Limitations of today's CO2-EOR technology
- Increased operator knowledge, comfort with, and willingness to pursue CO2-EOR
 - Reducing the uncertainty of CO2-EOR economics
- Achieving both requires research on and demonstration of "next generation" CO2-EOR technologies
 - As well as possible financial incentives to promote CO2 supplies for CO2-EOR
- Willingness/ability of regulators to permit/ encourage CO2-EOR and associated CO2 storage

Outline

- 1. CCS overview
- 2. Integrating CO2-EOR and CO2 Storage
- CO2-EOR
- Improved methods
- **3.Application & Prospect**
- Case
- Prospect
- 4. Summary & Suggestions

- CO2-EOR Offers Large CO2 Storage Capacity Potential.
 CO2-EOR in oil fields can accommodate a major portion of the CO2 captured from industrial facilities.
- 2. CO2-EOR Needs CCUS. Large-scale implementation of CO2-EOR is dependent on CO2 supplies from industrial sources.
- 3. CCS Benefits from CO2-EOR. The revenues (or cost reduction) from sale of CO2 to EOR helps CCS economics, overcomes some barriers, while producing oil with a lower CO2 emissions .
- 4. Both CCS and CO2-EOR Still Need Supportive Policies and Actions. Focused R&D investment, supportive policies.

