MODELING OF CRITICAL MATERIAL SUPPLY CHAINS

ALLISON BENNETT IRION Director, Supply Chain Research

19 JULY 2022

U.S. DECARBONIZATION GOALS

A HOLISTIC APPROACH IS REQUIRED TO ACHIEVE AGGRESSIVE DECARBONIZATION GOALS

Multi-level, Multi-fidelity Framework Inclusive of all Metrics (e.g., energy, emission, greenhouse gases, economics, equity, environmental justice...)

CLEAN ENERGY SUPPLY CHAINS BROADLY DOE's "Supply Chain Deep Dive" reports in response to E.O. 14017

- Identified vulnerabilities and opportunities for 11 energy industrial base technology supply chains to decarbonize U.S. Economy
 - Widespread reliance on foreign countries for refined materials and intermediate products, not isolated to raw materials (*e.g. separation and refining of rare earth elements for magnets*)
 - Limited availability of certain materials to achieve climate goals under existing scenarios (*e.g. iridium in catalysts for electrolyzers*)
- Need for dynamic market modeling of decarbonization supply chains from mining to finished products that accounts for competing uses and market signals

NEED FOR SUPPLY CHAIN MODELING AND INFORMATION

Modeling and information to address vulnerabilities

- Common vulnerabilities and challenges
 - Opaque markets with sparse data availability across the supply chain (proprietary information)
 - Demand uncertainty for specific (sometimes nascent) technologies
 - Global market instability of critical materials (REEs, PGMs, battery materials, etc.)
- Call for DOE to provide informational support to domestic industry and compile qualitative and quantitative data on various supply chains to close information gap
- Supply chain modeling plays central role in providing informational support to address these challenges
 - Demand scenarios (sufficient to support domestic industry, supply constraints, etc.)
 - Competitiveness of domestic industry
 - Viability of specific strategies
 - Impact of global events and disruptions

EO. 14017: COMPETITIVENESS & COMMERCIALIZATION One-year cross-cutting report supporting analytically informed decisions to address supply chain issues

- Recommendations to support a sustainable domestic supply chain:
 - Significantly augment the analytical horsepower needed
 - Conduct systematic analysis for the most at risk supply chains to guide decision-making
 - Develop integrated commercialization roadmaps for priority technologies, industries, and markets
 - Use economic analysis and roadmaps with interagency partners to develop integrated commercialization strategies

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

KNOWN CHALLENGES

- U.S. desire for secure, ethical and economic access to critical and strategic materials needed for the clean energy transition
- GAO:
 - Limited data and analytical tools to support decision-making,
 - Insufficient research and development
 - Minimal domestic infrastructure and capacity
 - Potential adverse effects on the environment and worker safety
 - Limited economic viability of recovery and substitution methods

GAO	United States Government Accountability Office Report to the Ranking Member, Subcommittee on Interior, Environment, and Related Agencies, Senate Committee on Appropriations
June 2022	CRITICAL MINERALS
	Building on Federal Efforts to Advance Recovery and Substitution Could Help Address Supply Risks

GAO-22-104824

EXAMPLES OF DOE/NL MODELS (*LIST NOT EXHAUSTIVE)

RELIANCE ON IMPORTS FROM SENSITIVE NATIONS CREATES SUPPLY VULNERABILITIES

Causes U.S. exposure to price fluctuations and supply disruptions

Types of Supply Disruptions

Source: Matthew E. Riddle, Eric Tatara, Chuck Olson, Braeton J. Smith, Allison Bennett Irion, Braden Harken, David Pineaut, Elisa Alonso, Diane J. Graziano, *Resources, Conservation and Recycling*. Volume 164, (2021).

UNCERTAINTIES THAT ANALYTICAL APPROACHES CAN ADDRESS

- Evaluate the market viability of different strategies for building out domestic supply chains from mines to materials
- Enhance understanding of the economic viability of domestic recycling and how recycling could affect markets, foster domestic demand, and mitigate supply disruptions
- Explore how different types of supply disruption could affect attainment of U.S. decarbonization goals
- Study the market impact and supply chain vulnerability of evolving decarbonization technologies, including those that substitute away from CMs
- Assess the effectiveness of supply chain resiliency measures (post-pandemic, geopolitical, etc.)
- Examine longer-term material supply issues
- Assessing Competitiveness

DIVERSE EXPERTISE TO LINK SCIENCE TO APPLICATION

ADVANCED PHOTON SOURCE

CENTER FOR NANOSCALE MATERIALS

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SOLUTIONS ARE COMPLEX AND INTERDEPENDENT

Substitution: manipulate the chemistries of earth-abundant elements

Extraction: efficiently extract CMs from conventional and unconventional domestic sources **Processing:** increase the flexibility of processing to tolerate mixing primary and recycled feedstock

Analytics: decision-support grounded in understanding risk and dependencies to assure our CM supply and avoid future material criticality

A cohesive approach to secure stable domestic critical material supply chains.

DOE'S RECELL CENTER

Purpose

- Foster the continued improvement of cost-effective, environmentally sound processes to recycle lithium-ion batteries
- Bring together experts from all battery recycling areas and bridge the gaps
- Efficiently address the many challenges that face a successful advanced battery recycling infrastructure

Outcome

- Minimize use of the earth's limited resources, reduce energy consumption and increase our national security
- Provide stability to the battery supply chain
- Drive battery pack costs down to DOE's \$80/kWh usable energy goal

RECELL HAS FOUR FOCUS AREAS

- Binder Removal
- Cathode/ Cathode Separation
- Relithiation
- Cathode Upcycling
- Impurity Impact

 Cell Design for Rejuvenation

- Cell Shredding
- Electrode
 Delamination
- Anode/ Cathode Separation
 - Electrolyte Component Recovery

- EverBatt (TEA/LCA)
- LIBRA (Supply Chain Modeling)

EVERBATT MODEL FLOW

EverBatt breaks down and evaluates each stage of the battery's lifecycle providing the opportunity to compare each stage's cost and environmental impact to the overall impacts

The GREET (<u>Greenhouse gases</u>, <u>Regulated Emissions</u> and <u>Energy use in Technologies</u>) model Framework

BEnefit ANalysis (BEAN)

Newly released techno-economic analysis and data visualization tool

RELOG: REVERSE LOGISTICS OPTIMIZATION MODEL

- Open-source package for design and analysis of optimal reverse logistics networks:
 - Recycling plant location and sizing
 - Customer allocation
 - Optimal material flow
- Insights from RELOG
 - Facility location, sizing & upgrade:
 - Economic / marginal cost analysis:
 - What happens as supply, demand or costs change?

RELOG: Available at https://anl-ceeesa.github.io/RELOG

Global Critical Materials (GCMat) Model

 Objective: Utilize agent-based modeling as an analytical tool to assess supply disruption, dependencies, substitutions and trade policies to strengthen material supply chains critical to decarbonization technologies

U.S. DEPT OF

DEFENSE

Argonne

AN AGENT-BASED VIEW OF **MODELING CRITICAL MATERIALS**

HIGHLIGHTS OF RECENT SUPPLY CHAIN DISRUPTION PUBLICATION WITH DOD-DLA

- Study of impacts of three types of supply disruptions on rare earth markets
 - Shut-down of production from Mt Weld mine in Australia
 - Reduction in illegal rare earth oxide production in China
 - Restriction of rare earth exports from China
- Large and lasting impacts found on rare earth prices
- Analysis of model results improves intuition on how different rare earths might be affected differently depending on type of disruption

CONTACT US

Allison Bennett Irion Director, Supply Chain Research Email: abi@anl.gov

