Prepared for USEA-USDOE Workshop on Models for Deployment of CCUS Hubs

September 30, 2021

Eric Larson

Senior Research Engineer Andlinger Center for Energy and the Environment **Princeton University** elarson@princeton.edu

PRINCETON UNIVERSITY **NET-ZERO AMERICA**

POTENTIAL PATHWAYS, INFRASTRUCTURE, AND IMPACTS

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan

https://netzeroamerica.princeton.edu

andlinger center for energy+the environment

High Meadows Environmental Institute

Five modeled least-cost paths to net-zero in 2050 show implications of different approaches

All paths employ six key pillars of decarbonization

High Meadows Environmental Institute

CO₂ transport network design combines state-of-art understanding of storage basins and geospatial downscaling of CO₂ point sources.

- 1. Most prospective storage basins identified based on practicable storage capacity [Teletzke *et al.*, 2018].
- 2. Notional supply-cost curve for CO_2 transport and storage established using expert judgement and industry consultation (BP, ExxonMobil, Occidental), assuming shared transport infrastructure.
- 3. Least-cost optimization model of energy/industrial system decides levels of CCS in power sector, fuels production and industry in 5-year time steps across 14 regions for the U.S.
- 4. "Downscaling" analysis for each region defines locations for each facility at county level.
- 5. Notional CO_2 trunk line network drawn 'by eye' to serve major clusters of point sources; point source downscaling then repeated to locate all point sources within 200 km of trunk lines. Spur lines added to connect point sources to trunk lines using shortest distance following existing ROWs*.
- 6. Trunk and spur lines sized and costed using NETL CO_2 Transport Cost Model.
- 7. Build schedule delivers CO_2 transport infrastructure in advance of start of CO_2 capture activity.
- 8. Original supply-cost curve assumptions for transport and storage validated against levelized T&S cost calculated using infrastructure build schedule and NETL cost model.

^{*} Existing ROWs include natural gas, NH_3 and CO_2 pipelines, railways, interstate highways, and > 220kV electricity transmission lines, as mapped in Edwards and Celia, "Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States," *PNAS*, 115(38): E8815-E8824, 2018.

Notional CO_2 storage capacity appraised, permitted and developed in 2050 is up to 1.8 billion t/y, mostly in Gulf Coast

Some capture plants online by 2030, followed by rapid growth in 2030s and 2040s. E+ and E+RE- pathways are shown here.

 CO_2 captured and injected in 2050 is 1.3x to 2.4x the volume of current annual US oil production (*at reservoir pressure*).

High Meadows Environmental Institute

Existing CO₂ pipeline network

- ~ 80 million tCO₂/yr transported
- ~ 8,500 km of pipelines
- Servicing enhanced oil recovery operations
- Majority in Permian Basin (West Texas and southeast New Mexico)

Trunk line construction begins before 2025 with connection between Permian Basin and Gulf Coast

E+ scenario No CO_2 flow in this period 700 km new pipelines Capital in-service: \$70B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282
- 23.7419

Trunk lines (capacity in MMTPA)

---- < 100

- _____ 100 200

Trunk line build out continues and initial CO₂ capture plants come online, with spur lines connecting to trunk network

E+ scenario 65 million tCO₂/y 19,000 km pipelines

Capital in-service: \$70B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282
- 23.7419

Trunk lines (capacity in MMTPA)

- _____ 100 200

Trunk network routes complete; some sections add parallel lines as more capture projects are built and connected

E+ scenario 246 million tCO_2/y 41,000 km pipelines Capital in service: \$115B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282

23.7419

Trunk lines (capacity in MMTPA)

- _____ 100 200

More individual trunk line duplications as number of capture projects continues to grow

E+ scenario 435 million tCO_2/y 51,000 km pipelines Capital in service: \$125B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282
- 23.7419

Trunk lines (capacity in MMTPA)

----- < 100

- _____ 100 200

CO₂ capture plants connected to trunk lines grow rapidly

E+ scenario 687 million tCO_2/y 70,000 km pipelines Capital in service: \$135B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282
- 23.7419

Trunk lines (capacity in MMTPA)

- _____ 100 200

2050 totals: 21,000 km trunk lines + 85,000 km spur lines (equivalent to ~22% of US natural gas transmission pipeline total)

E+ scenario

929 million tCO_2/y 106,000 km pipelines Capital in service: \$170B

CO2 point source type

- CO2 point sources
- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel

CO2 captured (MMTPA)

- 0.0006449
- 7.9144
- 15.8282
- 23.7419

Trunk lines (capacity in MMTPA)

Capital for national CO₂ collection and transport network is \$170 to \$230 billion, or ~ $11 \text{ to } 16/\text{tCO}_2$ when amortized across all users

Costs (2020\$)*	E+	E- B+
Trunk lines		
Total length, km	21,100	25,400
Total installed capital cost, billion 2020\$	101	135
National network-access charge, $/tCO_2$ delivered	11.3	7.6
Center-East network-access charge, tCO_2 delivered	11.3	7.4
West network-access charge, $/tCO_2$ delivered	11.6	10.4
Spur lines		
Total length, km	85,800	85,700
Total installed capital cost, billion 2020\$	69	88
National network-access charge, $/tCO_2$ delivered	4.6	3.0
Total trunk + spur lines		
National network-access charge, $/tCO_2$ delivered	15.9	10.6

* Costs, including pipelines and compressors, were estimated using the $DOE/NETL CO_2$ Transport Cost Model (version 2b).

Prepared for USEA-USDOE Workshop on Models for Deployment of CCUS Hubs

September 30, 2021

Eric Larson

Senior Research Engineer Andlinger Center for Energy and the Environment **Princeton University** elarson@princeton.edu

PRINCETON UNIVERSIT **NET-ZERO AMERICA**

POTENTIAL PATHWAYS, INFRASTRUCTURE, AND IMPACTS

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan

https://netzeroamerica.princeton.edu

THANK YOU!

andlinger center for energy+the environment

High Meadows Environmental Institute