Carbon Conversion Program Overview and Wider Thoughts

Joseph Stoffa, PhD Technology Manager

National Energy Technology Laboratory (NETL)

One of 17 U.S. Department of Energy (DOE) national laboratories; producing technological solutions to America's energy challenges.

Mission

- Ensuring affordable, abundant and reliable energy that drives a robust economy and national security, while
- Developing technologies to manage carbon across the full life cycle, and
- Enabling environmental sustainability for all Americans.

Vision

• To be the nation's premier energy technology laboratory, delivering integrated solutions to enable transformation to a sustainable energy future.

Mission

Advance carbon management through carbon conversion

Goals

- Support R&D that can convert CO₂ into products
 - Conversion must be environmentally and economically attractive
- Support scaling (demonstration) of technology where appropriate

Drivers

- United States 2020 CO_2 emissions \approx 4.7 gigatonnes
 - Total global CO_2 emissions in 2021 \approx 36.3 gigatonnes

Challenges

- Scale of CO₂ emissions relative to CO₂ consumption
- Qualifying economic viability and environmental impact requires significant resources
- Electricity prices rarely negative/free
- "Prototypes are easy, production is hard"

Carbon Conversion Program R&D Areas

https://netl.doe.gov/carbon-management/carbon-utilization

NETL CO2U LCA GUIDANCE TOOLKIT

Technology Area

R&D through Research and Innovation Center

- Majority focus on conversion into chemicals
- Activity in catalyst design, microwave reformation, reactive capture, and more

Life cycle Analysis through Energy Systems Analysis Team

- Vital to determining economic viability and environmental impact
- Active in Global CO₂ initiative
- Challenges
 - Working to harmonize LCA methodology with other groups
 - Requires collaboration across multiple offices, departments, and external entities

Techno-economic analysis through Energy Process Analysis Team

- All successful technologies must add value
- Sensitivity analysis dependent upon many unknowns
- Not as straightforward to qualify as technical viability

NATIONAL ENERGY TECHNOLOGY LABORATORY

Extramural research outside of NETL

Various funding mechanisms employed

- Field Work Proposals with other national laboratories
- Funding Opportunity Announcements
 - Majority of funding is competitively awarded
- Grant Programs
 - SBIR and STTR for small businesses and institutions of higher education
- Other mechanisms including TCF, ACT, EPSCoR

Robust project portfolio

- Thirty-five active projects within the portfolio and growing quickly
 - Mineralization, catalytic pathway, and biological uptake

Demonstration grant program is not exclusive to FECM/NETL efforts

A range of products are possible

- Animal feeds
- Nutraceuticals
- Dyes/colorants
- Polymers
- Soil amendments
- Fuels
 - Specific to the mission of DOE EERE's BETO (BioEnergy Technologies Office)

Advantages and challenges

- Uses well understood processes (10,000+ years of human agricultural experience)
- Mostly enabled with catalog engineering (uses COTS equipment)
- Biological processes well suited to creating many complex carbon molecules
- Large areas required to achieve gigatonne scale
 - Kinetically slower than higher temp/pressure processes

Carbon Conversion via Biological Uptake

Pictures courtesy of University of Illinois Urbana-Champaign

Picture courtesy of Global Algae Innovations

Picture courtesy of University of Maryland Center for Environmental Science

A wide range of products are possible

- Fuels
- Polymers
- Solid carbons
- Alcohols
- C2-C4 products (ethane, propane, butane, etc...)
- Methanol and Methane

Advantages and challenges

- Pathways to gigatonne scale exist
- Almost any molecule can be synthesized
 - Including those currently derived from fossil fuels
- Value of products must outweigh cost of energy inputs
- Breakthroughs may require significant funding (e.g. electrochemistry and catalysts)

Carbon Conversion via Catalytic Pathway

Picture courtesy of SkyNano

Picture courtesy of University of Louisville

Carbon Conversion via Mineralization

A limited range of products are possible

- Cured concrete blocks (CMU)
- Synthetic aggregates
- Suboxides
- Other building materials

Advantages and challenges

- Can be energetically downhill
- Can apply at gigatonne scale
- Mostly enabled with catalog engineering (uses COTS equipment)
- Can address other waste streams (e.g. produced water or mine tailings)
- Products often have a low specific value (i.e. \$/tonne requires large scale)

Carbon Conversion via Mineralization

Pictures courtesy of UCLA

Picture courtesy of University of Wisconsin Madison

Tomorrow will look a lot like today

- Mix of fossil, renewable, and nuclear resources
 - Abundant waste heat integration opportunities
- Industrial electricity prices of \$60 \$80 / MWh

Inexpensive and abundant hydrogen

- \$1/kg Hydrogen
 - Thermochemical conversion of CO_2 into chemicals and plastics
 - Industry widely decarbonized (e.g. steel, cement, fertilizer)

Techno-cornucopian worldview

- Inexpensive electricity at \$20 \$30 / MWh
- Widescale electrification
- Favorable for electrochemical approaches

Other unknowns

• Carbon prices/credits, DAC costs, energy breakthroughs, etc...

Expanding the program

- Funding for program is increasing quickly
- Interest is increasing even more quickly than funding

Collaboration with multiple stakeholders

- Necessary due to the scale and breadth of the challenge
- It's not just FECM; lots of other DOE Offices, USG Departments, and NGOs involved

Program supports capabilities to test technologies at scale

- National Carbon Capture Center (NCCC)
- First USG funding source to support UCLA CarbonBuilt technology
 - One of two winners of prestigious NRG COSIA XPRIZE

Supporting R&D across multiple pathways

• Biological, thermos/electro chemical, mineralization, and reactive capture

TEA and LCA are vital for an effective program

• "It's tough to make predictions, especially about the future"

Carbon Conversion Contacts and Resources

Joseph Stoffa

NETL Technology Manager

Joseph.Stoffa@netl.doe.gov

Amishi Claros

FECM Program Manager

Amishi.Claros@hq.doe.gov

https://netl.doe.gov/coal/carbon-utilization

