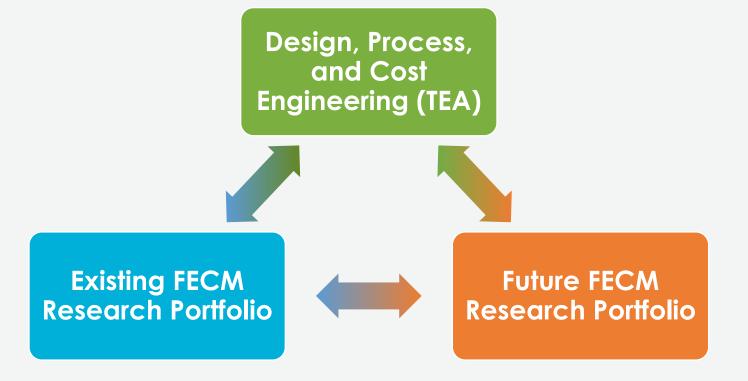

Overview of Techno-Economic Analysis Process

Samuel Henry

NETL-RIC Strategic Systems Analysis and Engineering



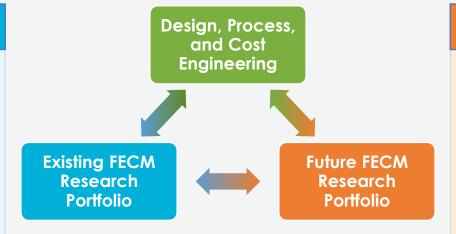
NETL Role with FECM Programs

Design, Process, and Cost Engineering at NETL

DOE-FECM Program Goals and Objectives

NETL is the only Government Owned, Government Operated DOE National Laboratory

NETL Role with FECM Programs


Design, Process, and Cost Engineering at NETL

DOE-FECM Program Goals and Objectives

Existing FECM/NETL Research Portfolio

- Intramural and extramural R&D, spanning the technology readiness spectrum, from new concepts to commercial technologies.
- Provide bases for the evaluation of external techno-economic analyses, technology maturation plans, technology readiness assessments, etc.
- Support quantitative R&D goal setting, strategic planning, portfolio analysis, and program evaluation efforts.
- Provide public performance and cost data for use in energy system models.

Direct DOE-FECM Support

- Provide rapid response analyses on an ad hoc basis for NETL and the Office of Fossil Energy and Carbon Management.
- Periodic stakeholder progress and product briefings.

Future FECM/NETL Research Portfolio

- Support the future research portfolio through the identification of new energy conversion concepts and development of insight on the potential of new technology ideas.
- Assist in the establishment of new FECM programmatic thrusts (i.e. R&D opportunity, performance/cost metric establishment)
- Direct input into programmatic Funding Opportunity Announcements (FOA) and other extramural funding opportunities.
- Multi-laboratory initiative and consortium participation.

Outline

- Introduction
 - What is Techno-Economic Analysis?
 - Why Techno-Economic Analysis?
 - Connecting with Life Cycle Analysis
- Basic Methodology for Conducting Techno-Economic Analysis
 - NETL Quality Guidelines for Conducting Techno-Economic Analysis
- Additional Resources
- Wrap Up

Introduction

NATIONAL ENERGY TECHNOLOGY LABORATORY

What is Techno-Economic Analysis?

- Techno-Economic Analysis (TEA) provides a methodology for systematically assessing technology states against a fixed reference case
 - It is a method of analyzing the economic performance of an industrial process, product, or service including carbon-derived products.
 - Objectives:
 - Guiding investment pathways for technology development
 - Quantification of R&D performance targets and priority
 - Identification of critical data gaps
 - Present summary results in an organized, concise, and visually coherent form

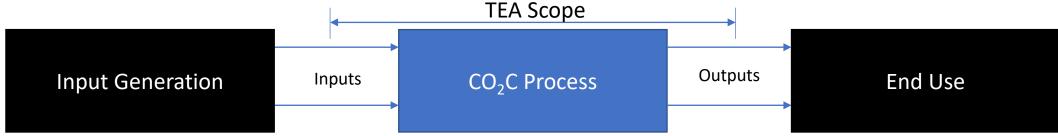
Introduction

NATIONAL ENERGY TECHNOLOGY LABORATORY

Why Techno-Economic Analysis?

- What Techno-Economic Analysis Does:
 - TEA informs the discovery, design, and operation of processes that benefit from systematic decision-making techniques **for the often-competing** goals of maximizing profits, minimizing costs, addressing market and policy drivers, and meeting environmental and technical constraints.
 - Provides a transparent and verifiable cost/performance comparison to business-as-usual production methodologies when following established methodologies for critical review
 - Provides uncertainty quantification
 - Provides an ideal performance/cost operating configuration to serve as a target for lower TRL technologies

Introduction


NATIONAL ENERGY TECHNOLOGY LABORATORY

Connection with Life Cycle Analysis (LCA)

- Techno-Economic Analysis focuses on the in-development technology, required balance-of-plant, and cost/energy state of incoming and outgoing resources and waste streams
 - Results are fed into or developed in parallel with Life Cycle Analysis (LCA), which derives
 the impacts of the technology from cradle-to-grave

Example:

- TEA may consider the cost, pressure, temperature, and composition of an incoming H_2 or CO_2 stream, but LCA would be needed to assess the environmental impact of how it was generated.
- TEA doesn't consider process components manufacturing or end-of-life disposition.
- TEA doesn't typically consider the end use of the product.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Quality Guidelines for Energy System Studies

- The methodology applied to TEA development involves the following four-step process:
 - 1. Development of a Technology Analysis Plan
 - 2. Creation of a Performance Model
 - 3. Cost Estimation
 - 4. Reporting

July 2015

DOE/NETL-2015/1726

NETL Performing a TEA Guideline

Document Link

Step One: Technology Analysis Plan

1. Technology Analysis Plan

- A technology analysis plan (TAP) is a roadmap for executing a TEA
- Discusses the approach and methodology required to conduct the TEA
- Develops a basic process flow diagram (PFD)
- Should be discussed with end-users prior to initiating the analysis
- Updated as the TEA is performed

The Technology Analysis Plan should address the following:

- Analysis Objective
- Reference Case/Scenario
- Novel Cases/Scenarios to be Evaluated
- Novel Design Basis (performance, cost, sensitivity analysis, etc.)
- Execution Timeline

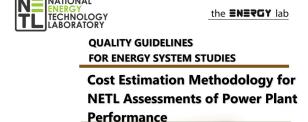
Step Two: Performance Model

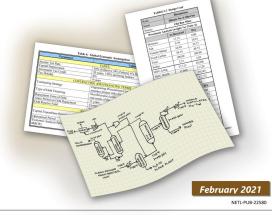
2. Create a Performance Model

- Utilize available tools/software (ASPEN, ChemCAD, Thermoflow, etc.)
- Hold product amount constant (i.e. chemical product rate, etc.)
- Understand how balance-of-plant equipment will be affected
- Develop a detailed process flow diagram
- Include feed purity specifications, conversion rates, heat duties, rate constants, emissions potential, etc.

Generating Useful Information:

- Develop material and energy balances consistent with baseline procedure
- Generate similar performance/output results from model
- Supply additional detail for modeling <u>novel</u> equipment
 - Design equations, scaling methodology, design basis




NATIONAL ENERGY TECHNOLOGY LABORATORY

Step Three: Cost Estimation

3. Cost Estimation

- Understand accuracy of cost estimation. NETL relies of AACE Estimate Class
 - Concept Screening (-20%/+100% Accuracy)
 - 0-2% Project Definition, based on technical analogs/engineering judgment
 - Feasibility Study (-15%/+50% Accuracy)
 - 1-15% Project Definition, based on preliminary mass and energy balances
 - Budget Estimate (-10%/+30% Accuracy)
 - 10-40% Project Definition, based on detailed process and economic modeling
- Capital cost estimation, capital charge factors, contingencies, global economic assumptions, etc., should be considered
- Detailed cost estimation guidelines are provided by NETL

NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL Cost Estimation

Methodology Report

Link

Step Four: Reporting

4. Reporting Methodology

- Summary of Technology Analysis Plan and discussion with end users
- Performance Model
 - Block Flow Diagram
 - Detailed Simulation Model
 - Material and Energy Balance
- Cost Estimation
 - Detailed cost based on comparison metric (allowable cost of CO₂, cost of product generated, etc.)
 - Detailed total overnight capital cost estimates
 - Sensitivity studies

Report Deliverable

- Summarize the above and include enough detail to reproduce stated results
- Should follow prescribed guidelines/template (may be provided by DOE)
- Detail any assumptions made during the analysis!

Additional Resources

Cost and Performance Baseline and Other TEA Examples


- NETL has conducted a wide variety of TEA of energy systems in addition to carbon conversion technologies to draw comparison from
- Available Analyses to serve as examples:
 - Combustion Systems (natural gas, biomass, and coal)
 - Gasification Systems (dry and slurry feed, coal and biomass)
 - Oxy-combustion Systems (atmospheric and elevated pressure)
 - · Chemical Looping
 - Solid Oxide Fuel Cells/Solid Oxide Electrolysis Cells
 - Fuels and Chemicals(e.g., H₂, NH₃, methanol, etc.)
 Production from Fossil Fuels
 - Supercritical CO₂ Power Cycles (direct and indirect)
 - Process Water Treatment/ Zero Liquid Discharge Systems

- Bulk Energy Storage
- CO₂ Capture Systems (solvent, sorbent, membrane, cryogenic)
- Direct Air Capture
- CO₂ Purification and Compression
- Air Separation Units (cryogenic, ion transport membrane)
- Hydrogen Production / Recovery
- Combustion Turbines
- Steam Turbines (subcritical through adv. Ultrasupercritical steam conditions)
- CO₂ Conversion Technologies (EOR, Cements, Algal, EC, Microwave)
- Direct Power Extraction/ Magnetohydrodynamics

COST AND PERFORMANCE BASELINE FOR FOSSIL ENERGY PLANTS VOLUME 1: BITUMINOUS COAL AND NATURAL GAS TO ELECTRICITY

September 24, 2019

NETL-PUB-2263

NETL Energy Analysis Library Link

NETL Fossil Energy Baseline Report Link

Wrap Up

Why Techno-Economic Analysis

- TEA informs the discovery, design, and operation of processes that benefit from systematic decision-making techniques for the often-competing goals of maximizing profits, minimizing costs, addressing market and policy drivers, and meeting environmental and technical constraints.
- Provides a transparent and verifiable cost/performance comparison to business-as-usual production methodologies when following established methodologies for critical review
- Provides uncertainty quantification
- Provides an ideal performance/cost operating configuration to serve as a target for lower TRL technologies

Questions/ Comments

VISIT US AT: www.NETL.DOE.gov

- @NETL_DOE
- @NETL_DOE
- @NationalEnergyTechnologyLaboratory

CONTACT:

Gregory Hackett

Systems Engineer Strategic Systems Analysis and Engineering Gregory.Hackett@netl.doe.gov

