

Southeast Regional Challenges and Opportunities for Carbon Reduction and Removal Technologies

Michelle K. Kidder, Ph.D Senior Research and Development Staff

USEA-DOE-FECM Grant Workshop August 30, 2022 Approved for public release

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Problem

- 40 GT CO₂ emitted per year globally. To achieve 1.5 - 2°C, need reduced emissions and remove ca. 10 GtCO₂/yr by 2050
 - National Acad. Of Sci, 2019 "To meet targets of climate goals, need negative emission tech. to remove CO₂ from the air"
- CO₂ (and GHG) is a global issue; Biden Administration Climate Goals
 - By 2035 100% emission-free electricity
 - By 2050 achieve net-zero emissions
- Direct Air Capture (DAC) needs to meet the target of <\$100/ton CO₂
 - suffers from scalable, economical (energy and life cycle emissions), system integration technologies

Approaches Using Plants	Approaches Using Rocks	Approaches Using Clean Energy
Afforestation Biochar Engineered Wood Soil Carbon BECCS	Enhanced Weathering Ocean Alkalinity Enhancement	Direct Air Capture — Ocean Electrochemistry
Soil Carbon BECCS Macroalgae	Enhancement	Ucean Electrochemistry

Overall Picture of Emissions and the Source

*OAK RIDGE https://theconversation.com/us

Sectors that are difficult to convert or abate emissions

Reaching net-zero emissions goals will require society-wide changes to the economy

CAK RIDGE

Difficulty of decarbonization varies from "relatively straightforward" to "difficult to eliminate"

"Straightforward" = electrify all processes and generate electricity from CO₂-free source

Growth in renewable energy generation in US from 2000-2020 was ~5 quads Estimate for "straightforward" sectors in chart for US is ~70 quads

CO₂-negative technologies will be needed at gigaton scales to reach net zero

Regional Emissions

EMISSIONS FORECAST FOR UTILITIES

CAK RIDGE National Laboratory

5

Southern Alliance for Clean Energy@ Cleanenergy.org

Principles of Transportation

- Economy of Scale
- Economy of Distance
 - Both determine the need for battery electric, fuel cell or liquid fuels
- Vehicle lifetime and transitioning
- Lack of alternative fuels during a time of disruption to the fossil fuel supply, the market can be very volatile and difficult to predict.
 - Overhaul transportation energy resources in the US and increase resiliency and energy security with diversification of fuels, storage and renewable resources

Average mileage per day/trip

Fuel opportunity by weight and trip length. Source: IEA ETP; IHS; A Portfolio of Powertrains for Europe (2010)

Alternative Fuel Options for Transportation

- Hydrogen: low gravimetric and volumetric density; storage at high pressure/low temps: storage mass of diesel energy eq = 6x H₂ storage
 - Possible hydrogen fuel cells or H-battery
- Ammonia: can oxidize to NOx, low grav. density than diesel
- Biofuels: only 4% biofuels used in transport (worldwide); challenge life-cycle carbon emissions, cost and scalability
- Synthetic hydrocarbons: hydrogenation of feedstock; potential for carbon-neutral (green hydrogen+emission free electricity + CO₂ (DAC?))
 - Electrolysis (\$\$\$); DAC(\$\$\$)

Capture and Conversion Considerations

- Development of <u>materials</u> and <u>processes</u> are key to mitigate the ongoing challenges
 - Optimizing
 - Scaling
 - Cost
 - Life Cycle
 - Energy intensity
 - Stability
 - Regenerability

CO₂ Conversion

Chemical Targets from CO₂

carbonates and carbamates

carboxylations

10

Catal. Sci. Technol., 2014, **4**, 1482-1497

O=C=O

- Numerous products can be made from CO₂, but reactive pathways are limited, and efficiencies can be plagued by separations.
- All chemical reactions of CO₂ proceed via nucleophilic attack on the central carbon or electrophilic coordination to the oxygens.
- Majority of thermochemical or catalytic conversions are done in organic solvents.
- Understanding the market to implement design of reactions (begs for TEA/LCA)

Dual functional catalytic polymer for simultaneous capture and conversion of CO_2 (Michelle K. Kidder)

A holistic approach

- Catalytic polymer designed capture CO₂ and convert to valuable products, e.g. formic acid
- The technology decreases the need for expensive separations
- Currently scaling from TRL 2
 to TRL 4
- Optimization process through incorporation of reactor and kinetic modeling
- TEA/LCA to guide and facilitate economic evaluations and feasibility

CAK RIDGE National Laboratory

Pathway to Products: Chemical Targets

12

Potential to upgrade value of CO_2 by over 60 times (\$20 to \$1300/ton) into a zero-carbon chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.

Efficient, Scalable, Reactors Using Supercritical CO₂ (Gabriel Veith)

Reaction products – Current Market Ethanol – 0.2 Gt/year (\$90B) Methanol – 0.1 Gt/year (\$30B) Formic Acid – 0.6 Bt/year (\$0.75B)

CAK RIDGE

Advantages Compared To Aqueous Phase Chemistry

- 1. Reduce or eliminate hydrogen generation
- 2. Cost effective scaleup
- 3. Integration with CO₂ point sources
- 4. Ease of separations for products
- 5. Supercritical CO₂ already industrially accepted

Cement

Cement production is a major source of global CO_2 emissions and also generates the most emissions per revenue dollar.

Cement manufacturing is a highly complex process.

Potential CO₂ emissions and reductions,² GtCO₂ anually

¹Figures are global estimates for emissions potential, taking all potential levers into consideration.

²Effect might be smaller or larger depending on speed of shift.

³ For example, carbon capture, use, and storage; carbon-cured concrete; 3-D printing.

⁴ For example, cross-laminated timber, lean design, prefabricated/modular construction, building information modeling.

⁵Alternative building materials and other approaches will likely play an important role in decarbonizing the cement industry, but a great deal of uncertainty remains as to how much they will reduce emissions.

Source: "Getting the numbers right," Global Cement and Concrete Association, 2017, gccassociation.org; *Global Cement*, fifth edition, Freedonia Group, May 2019, freedoniagroup.com; *The Global Cement Report*, 13th edition, CemNet, cemnet.com; Umweltbundesamt (German Environment Agency); McKinsey 1.5-degree-pathway model; McKinsey Cement Demand Forecast Model

¹Assumed with 1kWh/t/100m.

²Assumed global average, data from the Global Cement and Concrete Association, Getting the Numbers Right 2017.
³Assumed reciprocating grate cooler with 5kWh/t clinker.
⁴Assumed forty transportation for average 200km.

Carbon Mineralization for Concrete Alternatives (Paula Bran Anleu)

Goal

• Develop an **alternative concrete** that captures CO₂ for its strength gain

Complete material characterization
Improve carbonation to > 70%

• Fabricate a CO₂-injecting formwork

Objectives

- for precast panelsScale up material development
- Fabrication of a thin precast wall panel

Impacts

- Potential to replace a significant share of Portland cement production
- Proof of concept already achieved carbonation of ~57%

Potential to reduce CO₂ emissions from ~800 kg/ton-cement to ~460 kg/ton-cement

National Carbon Capture Center (NCCC)

 Managed and operated by Southern Co; collaborative agreement with FECM and NETL

National Carbon Capture Center supports successful commercialization of CarbonBuilt low-carbon concrete technology

Bolstered by successful testing at the National Carbon Capture Center, CarbonBuilt and Blair Block have reached an agreement to utilize CarbonBuilt's revolutionary low-carbon concrete technology...

Read More >

Technologies tested at National Carbon Capture Center selected for large-scale pilot demonstration

Two carbon capture technologies developed through testing at the National Carbon Capture Center have been selected by the U.S. Department of Energy to advance to...

Read More >

News

Contact

Research

National Carbon Capture Center achieves major milestone with first fire of natural gas testing system

Operation of new infrastructure a major step in expanding the facility's work to advance carbon capture for natural gas power plants.

Read More >

About

CO₂ Utilization in the Southeast

CarbonBuilt technology produces very low- or no-carbon concrete blocks by using diluted CO_2 to cure them, thus chemically transforming and permanently sequestering CO_2 .

Blocks manufactured using this system were recently used to construct a single-story Habitat for Humanity home in Alabama. The Concrete Center (2022)

Testing of CarbonBuilt's "Reversa" process was completed at the NCCC in 2021 by injecting CO_2 from flue-gas streams into more than 5,000 concrete blocks. Southern Company manages and operates the NCCC for DOE.

The Reversa process is based on technology developed at UCLA that received the prestigious 2021 Carbon XPRIZE.

Eastman Low-Carbon Feedstock Strategy

Non-aqueous Electrochemical CO₂ Reduction with Electron-Proton Mediators (Jagjit Nanda)

This project will develop a non-aqueous electron-proton mediated (EPM) flow cell for scalable reduction of CO₂ to high value products like ethylene

Combining redox mediators and electrocatalysis significantly reduces the overpotential to improve energy efficiency

Electrolysis cell and continuous stir reactor (CSTR) are both scalable

Energy Efficiency =
$$\frac{E^{\circ}}{E^{\circ} + \eta} \times \varepsilon_{Faradaic}$$

An example of a mediator & solvent that will be used is cobaltocene $[Co(C_5H_5)_2]$ & DMF

Molten Salt CO₂ Capture and Conversion to Carbon Nanomaterials (Shannon Mahurin)

- Goal: Develop molten salts (e.g. Li₂CO₃) to electrochemically convert CO₂ to highvalue solid carbon products
- Task 1: Develop low-melting-point salts with high CO₂ absorption and efficient conversion
 - Target 400 °C melting point salts
 - Use AI/ML to reduce salt parameter space
- Task 2: understand and control mechanisms at the interface
- Target product will be graphite, a critical material lacking a domestic supply chain
- Process does not require pure CO₂ as input, allowing for a broad envelope of feed streams
 CAK RIDGE

Molten Salt

Expected outcomes

- Significant lowering of temperature needed for molten salts
- High value solid carbon products

Outcomes Expected from Process Intensification Approach

- Versatile toolset for understanding the behavior and characterizing the performance of energy conversion processes
- Accelerate reactor development and reduce cost by using multiphase flow reactor modeling and simulation tools
- **Optimizes performance** for equipment and unit operations, enabling more throughput and less process downtime
- **Reduces design risks** when validated by predictive science-based calculations, lowering risk in obtaining return on investment

ORNL committed to strengthening the regional innovation ecosystem

Making our resources available to industry partners Technology licenses

Small business vouchers

Strategic Partnership Projects

Cooperative R&D agreements

Contributing to state and local economic development initiatives

SkyNano LLC

Carbon fiber

Automotive

Deploying an industry cluster strategy

to build regional

competitive

advantage

Additive manufacturing

What Constitutes CapEx?

- Business case in general \bullet
 - Physical assets: buildings, equipment, machinery, vehicles
- Chemical Industry impacted by
 - Replacement: Lifetime may be shortened due to "breakdown"
 - Supply needs and regulations
 - Many refineries are built and can run 100+ years, expensive to rebuild
- What will convince industry to invest in chemicals from CO_2 ?
 - Repurposing some of existing infrastructure
 - Location; supply of CO_2 , H_2 , etc. and distribution of product —
 - Efficiency of processes, incentive, etc. —
 - Energy needs, storage, waste management, implementation of renewables, purifications/separations

Summary

- Multiple pathways from CO₂ to products
- Need to identify cost effective, energy efficient pathways
 - Scalable
 - Feedstock challenge: purity, cost, source, modular/adaptable
 - Separations (upstream and downstream)
 - Repurposing of current infrastructure and location
- Teaming; industrial engagement to help identify challenges
 - Market drivers and incentives
 - Transport of products, infrastructure/repurpose?
 - Emission reduction potential overall
 - TEA/LCA
 - Data management; regulatory controls and digital transformation
- Social, economic and environmental justice

Thank you!

kidderm@ornl.gov

Additional insights

- Out of challenges come opportunities:
 - Job creation
 - Education
 - Teaming: We are ALL in this together
- Needs
 - Greening the grid; and reducing energy input for capture and conversion
 - Affordability: CO₂ (goal of DAC <\$100/ton <10y), H₂, electricity, for end products (chemicals and fuels)
 - Process, material (from atomic to molecular scale i.e., catalysts to pipelines), etc.
 - Infrastructure
 - Sustainability
 - Data management
 - AI/ML for rapid screening; modeling at different length scales and use of autonomous systems
- Awareness
 - Environmental and Social Justice
 - Economics: start with TEA/LCA to identify gaps and advantages

Summary

Alternative feedstocks

- Synthetic feedstock from captured carbon
- On-purpose biomass feedstock
- Feedstock from municipal, industrial or biomass waste
- Blue or green hydrogen

CAK RIDGE

27

Process decarbonization

- Generating and/or sourcing renewable electricity and fuels
- Microgrids and energy storage
- Energy efficiency and electrification
- Carbon capture, use and storage
- Regulatory and social license requirements

Resource stewardship

- Product recycling
- Circular recovery to new feedstocks
- Product recovery to alternative uses (e.g. fuels)
- Product waste-to-energy
- Water reduction and re-use

Digital transformation

- Digital twin for asset management
- Process simulation and optimization
- Operational monitoring and analytics
- Carbon accounting and compliance
- Information and regulatory control
- Data collaboration best practices

Ocean carbon removal

ORNL has a distinguished history of making groundbreaking discoveries and meeting national needs

Development, production, and distribution of radioisotopes and stable isotopes Science and engineering of the nuclear fuel cycle

> Reactor technology Materials and fuels

Separations chemistry Development of neutron scattering, neutron activation analysis, and other innovative research tools

Development and application of highperformance computing resources Delivering advances in physical and life sciences

> 49 In Sn Sb Te

Torison Dynamics Humitum 68 68 TM Yb Li

MC

Nihoniun

09

ORNL facts and figures 236 invention disclosures in FY20 2,032 journal articles published in FY20 70 $\mathbf{\Theta}$ World's Nation's most most intense patents diverse energy neutron issued portfolio Managing source Nation's S in FY20 major DOE largest 5,720 projects: materials US ITER, employees research exascale 3,200 portfolio World-\$2.3B computing class research annual research guests expenditures reactor annually Forefront \$750M scientific modernization computing investment facilities

CAK RIDGE

State of the art facilities

CAK RI

Carbon Dioxide Removal approaches (CDR)

CDR Primer Ch. 2 (cdrprimer.org): Editors Jennifer Wilcox, Ben Kolosz, Jeremy Freeman

- 1. Direct Air Capture (DAC)
- 2. Bioenergy with CCS (BECCS)
- 3. Biomass Storage
- 4. Soil Carbon Sequestration
- 5. Ocean Alkalinity Adjustment
- 6. Mineralization
- 7. Hybrid Concepts

Also in CDR Primer: Forest management, coastal blue carbon

Image: Physics World

In every case, cost when deployed at gigaton scale will determine impact

Large pilot testing for flue gas (2021-2024)

CAK RIDGE National Laboratory

33

Process intensified absorber to reduce capital expense from flue gas capture

Summary

- Polymer-Hybrid materials can impact the efficiency and potential cost in capture and conversion
 - DAC
 - Enhance capacity and kinetics for DAC of NOHMs
 - Reduce water sorption to decrease energy penalty
 - Decrease diffusion limitations
 - Allow for physical and practical use (woven materials, membranes, etc) in system integration
 - Simultaneous Capture and Conversion
 - Allow for catalytically robust materials
 - Decrease the need for separation or compression of CO_2
 - Synthetic use of CO₂ for non-toxic synthetic pathways of chemicals

How ORNL is funded and collaborates

- DOE sponsors (some not all)
 - Basic research: DOE Office of Science
 - Applied research: DOE EERE (AMO, VTO, HFC, and BETO), FECM

User facilities: SNS, HFIR, CNMS, NTRC, Computing

Collaborations: SPP or one of the DOE FOA's

Watch for or get on a mailing list for DOE –RFI's -DOE especially values input from industry

Partnerships are vital to accelerating technology transition and engaging with industry and universities

Technology transfer

- Cooperative R&D agreements (CRADAs)
- Strategic partnership projects
- Technology licensing

Industry and economic development partnerships

- Regional industry recruiting and cluster development
- State and local economic development partnerships
- Institute for Advanced Composite Materials Innovation

Education and university partnerships

- Research and educational experiences
 - UT-ORNL
 Bredesen
 Center
 - GEM fellowship program
 - Graduate
 Opportunities
 (GO!) program
 - Science education and workforce development programs (through ORISE)
- Postdoctoral program
- Ambassador program

Interacting with the private sector

Technology licensing	Sponsored research	Industrial partnerships	Economic development	Sub- contracting
Moving intellectual property developed at ORNL to the commercial marketplace	Bringing ORNL expertise and facilities to bear on problems that can only be solved using these resources, with full cost recovery	Engaging in collaborative R&D for shared benefit Providing technical assistance to solve complex problems	Supporting the creation of new jobs, new companies, and increased competitiveness for the region, the state, and the nation	Purchasing a wide variety of goods and services, with a special emphasis on small businesses

Flexible Research Platforms at DOE's ORNL User Facilities

National Transportation Research Center (NTRC)

Fossil Energy CO₂ Capture Column for Process Intensified Packing Element R&D

Combustion Research Platforms

Manufacturing Demonstration Facility (MDF)

Building Technologies Research and Integration Center (BTRIC)

Fossil Energy Direct Air Capture (CO₂) with Building Air HVAC System

Possibilities for Fossil Energy CO2 Utilization: Research Platform for CO2 to Intermediates for Chemical Manufacturing???

Ground-Level Integrated Diverse Energy Storage (GLIDES)

Also (not shown)...

Carbon Fiber Technology Facility (CFTF)

Grid Research Integration and Deployment Center (GRID-C)

ESTD Strategy for Decarbonization

– An Integrated Systems Approach

Span of ORNL capabilities in energy generation, distribution, and end use

- Bi-directional electron flow:
 - Transactive energy controls
 - At-scale energy storage
 - Light duty vehicle electrification
- Net-zero carbon flow:
 - Large scale CO₂ capture
 - Direct air capture
 - Low-cost carbon-free H₂
 - CO₂ conversion to useful chemicals/materials/feedstocks
 - Synthetic carbon-neutral fuels for hard to electrify sectors
- Bi-directional heat flow:
 - Waste heat recovery/upgrade
 - Heat integration/optimization

ORNL is managed by UT-Battelle, LLC

ORNL's exceptional capabilities for designing, characterizing and certifying <u>structural</u> <u>materials</u>, are enabling the development of more efficient fossil fuel energy systems

Regional Emissions

42 **CAK RIDGE** National Laboratory

CO₂ US Emissions

U.S. POWER GENERATION BY ENERGY SOURCE Electric power sector only, in billions of kilowatt-hours, 2005-2019 1800 COAL 1600 (suoillid) 1200 GAS NUCLEAR RENEWABLES 200 OIL 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 (est.) NOTE: Does not include distributed generation

Measured and projected reference case, 1990-2050

SOURCE: U.S. Energy Information Administration

PAUL HORN / InsideClimate News

- SOURCE: Rhodium Climate Service Electricity 31%
- - VNX Ă Ĉ Ė́IĤĠ ĨĘĔ Č Ć
 - QNYĂ Ĉ ĈÍĚĢÎĦĤÍĨĚĨỆĤĢ
 - QV ĂÇ ËĤĚĞĦĤĬĔÍËĚĦĚËĨÎÍÉĒ

Cleaning the Grid

- Utilities setting targets from decarbonization
 - Decarb. fuel sources
 - Electric vehicles will impact the grid
 - Southern Alliance for Clean Energy (SACE)

DOE investments at ORNL enable solutions to the most compelling challenges of our time

Carbon Dioxide Removal approaches (CDR)

CDR Primer Ch. 2 (cdrprimer.org): Editors Jennifer Wilcox, Ben Kolosz, Jeremy Freeman

- 1. Direct Air Capture (DAC)
- 2. Bioenergy with CCS (BECCS)
- 3. Biomass Storage
- 4. Soil Carbon Sequestration
- 5. Ocean Alkalinity Adjustment
- 6. Mineralization
- 7. Hybrid Concepts

Also in CDR Primer: Forest management, coastal blue carbon

Image: Physics World

In every case, cost when deployed at gigaton scale will determine impact

