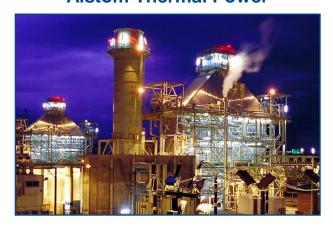


Pathways forward For CCS on Natural Gas Power Systems


For the United States Energy Association
Washington, D.C.
April 22, 2014

Alstom

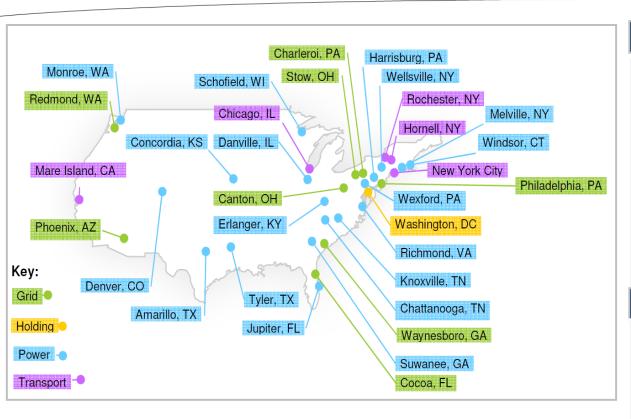
Equipment & services for power generation

Alstom Thermal Power

Alstom Renewable Power

Equipment & services for power transmission

Alstom Grid


Equipment & services for rail transport

Alstom Transport

Alstom in the US

- More than 100 years of presence in the U.S.
- \$3.5 billion in sales / 8,000 employees in 45 states
- Major manufacturing centers in the states of TX, TN, NY, CT
- Recent investments in TN and TX will create 600 green jobs for U.S. workers

TRANSPORT

Passenger Focused Rolling Stock

- · Largest plant in North America
- 7000 Metro cars produced in the US
- ACELA high speed train (160 mph)

Train Control systems

- · Leader in mass transit
- Proven PTC solution with 10 yrs experience

Train life services

- Leader in mid-life overhauls and renovation
- Materials management and fleet maintenance for transit and freight operators

POWER

- Power generation solutions for all major energy sources in the US
- Clean power technologies (emissions treatment, CO2 capture)
- Major investments in gas turbines and wind

GRID

- Expertise in power quality and reliability improvement
- Key technology leader in next generation smart grids

Alstom in the US

Equipment in 50% of all U.S. power plants

 Advanced software managing more than 40% of all power flowing on the U.S. grid

• 7,000 U.S. subway and rail cars were manufactured or modernized on an Alstom production line

Alstom CCS roadmap

TESTS COMPLETE

AEP Mountaineer USA – 58 MWth Chilled Ammonia, Coal

Vattenfall Schwarze Pumpe, Germany 30 MWth, Oxy - Lignite

EoN Karlshamn Sweden - 5 MWth Chilled Ammonia, Oil

Total Lacq France - 30 MWth Oxy - Gas

WE - Energie USA WI - 5 MWth Chilled Ammonia, Coal

DOW Chemical Co. USA, WV Adv. Amines - Coal

OPERATING

EDF Le Havre Adv. Amines - Coal

TCM Mongstad Norway France - 5 MWth Adv. 40 MWth, Chilled Ammonia, CHP **RCC Offgas**

Alstom BSF Windsor US - 15 MWth Oxy - Coals

Alstom GPU Pilot (Mobile) 0.3 MWth

Alstom Labs Växiö Sweden - 0.25 MWth Post C.-multi purpose

DOE/Alstom Windsor US - 3 MWth Chemical Looping, Coal

RFCS EU - Darmstadt Germany - 1 MWth Chemical Looping - Coal

LARGE-SCALE **PROJECTS**

White Rose CCS Project UK - 426 MWe Oxy Hardcoal

Awarded FEED for White Rose

White Rose CCS Project, located at DRAX Power Plant (Selby-UK)

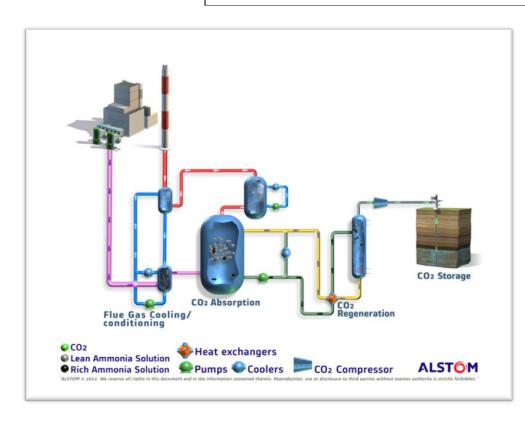
Windsor US pilot Learning important for White Rose - DOE funding

TCM Chilled Ammonia – Validation Plant

Design Basis

- CO2 Sources:
 - > Flue gases from natural gas CHP plant
 - Off-gases from the RFCC <</p>
- Validation plant, designed to capture:
 - 80 ktons CO2/year (RFCC) & 22 ktons CO2/year (CHP)
- Incorporation learning from previous pilots
- Unique Validation Features / Expectations

Design Features


- Compact and efficient layout (1300 m2)
- 150 tonnes of piping
- 62 control valves
- 39 Sampling Points
- 642 Inputs to DCS

Chilled Ammonia Process Technology Overview

Advantages

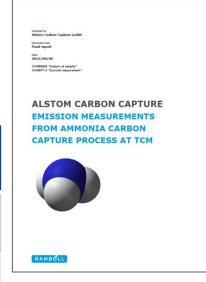
- Energy-efficient capture of CO2
- High CO2 purity (99.5+ vol%)
- Low CO2 compression power (High P Regen)
- Tolerant to flue gas oxygen and other impurities
- Stable solvent, no degradation
- No emission of volatile degradation products
- Low-cost, globally available reagent
- Valuable byproduct: ammonium sulfate

A 'Leading' Post Combustion Technology

Early Test Results

Parameter	Test A - Target	Measured Data
Flue Gas Rate	45,000	45,000 - 47,000
CO2 Capture Rate	85%	85-93%
Regenerator Steam	3200 kg/hr	3200-3700 kg/hr

Parameter	Test B - Target	Measured Data
Flue Gas Rate	35,000	35,000
CO2 Capture Rate	85%	83-86%
Regenerator Steam	2250 kg/hr	2130-2285 kg/hr
NH3 Emissions	2 ppm	1-2 ppm
Availability	>90%	>90%



Third Party Emissions Testing

Isokinetic samples taken on 17 July 2013

Compound	Detection Limit	Measured Data
Ammonia (*)		0.40 mg/Nm³
Aldehydes	< 11 µg/m³	nd
Alkyl amines	< 17 µg/Nm ³	nd
N-Nitrosamines	$< 2 \mu g/Nm^3$	nd
Nitramines	$< 0.020 \ \mu g/Nm^{3}$	nd
Total Nitrosamines	< 1 µg/Nm ³ (*) - 0.4 mg	nd g/Nm³ = 0.5 ppmv

CAP confirmed as an environmentally friendly technology

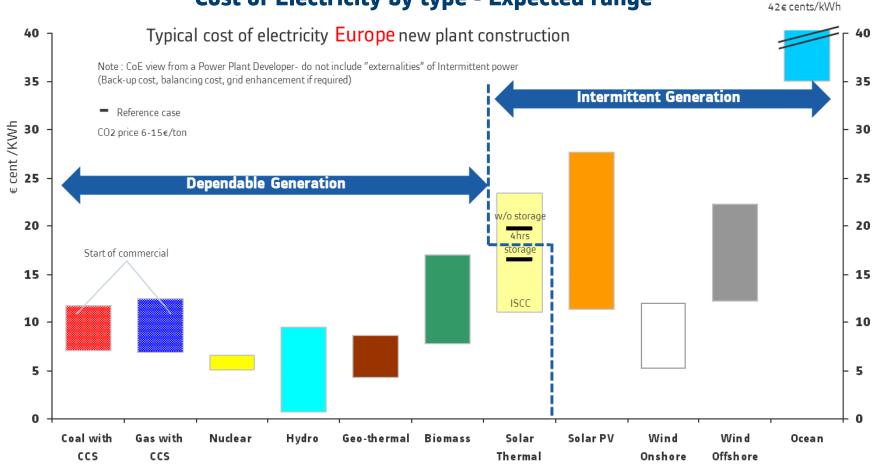
Further Test Strategy

- Overall system: Entire CAP facility
- Unit operations & subsystems:
 - Absorber systems regenerator system, etc.
- Auxiliary systems: Chiller, Co2 wash, etc.
- Control: Transient studies

 Tests will focus on performance both with CHP flue gas and refinery RFCC gas

Summary on TCM

- TCM plant is an **important step in the CAP roadmap**, ready for demos which will lead to commercial technologies.
- First operations and performance feedback are in line with Alstom's predictions and reconfirms the Benefits and Advantage of Alstom's CAP Technology
- Alstom and TCM have agreed to extend the CAP Operational Test phase to November 2014
- Norway & TCM have shown leadership in developing the TCM facility -Alstom is proud to be part of it, and we are excited about our continued partnership

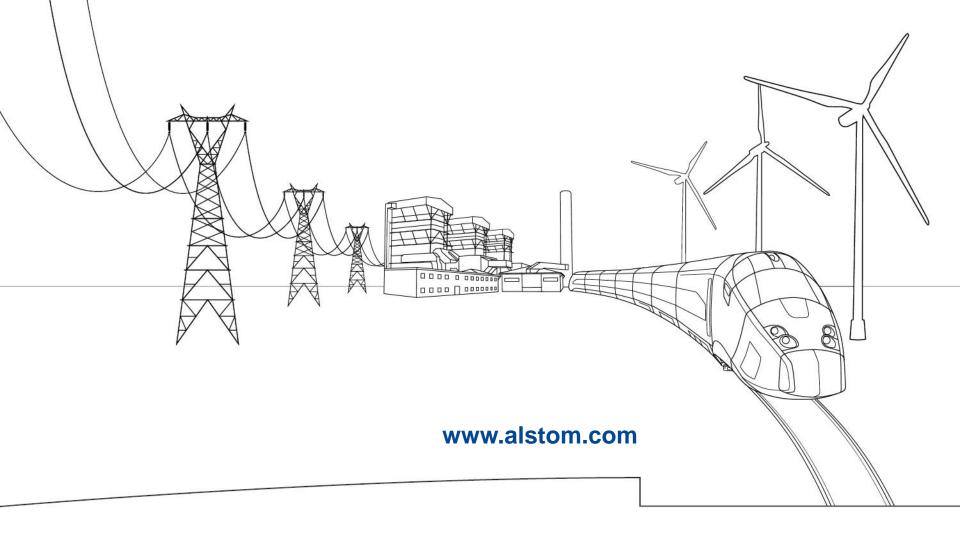


Cost Projections

Investment decision for low carbon New PP over next 5 years

Cost of Electricity by type - Expected range

Source: Alstom analysis 2013


Conclusion

Alstom has a leading position in CCS

- The technologies (1st Generation) are ready for scale up
- Need large scale demos in order to make the largest improvements in cost and performance and move down the "learning curve"
- Government support is needed policy, market incentives (like renewables have), and where appropriate, other revenue streams (e.g. EOR)
- 2nd Generation technologies are needed for the long term and need to be developed now

