REGIONAL CARBON CONVERSION US DEPT. OF ENERGY, FOSSIL ENERGY AND CARBON MANAGEMENT

CARBON CONVERSION R&D ACTIVITIES AT ANL

Dr. RAJEEV S. ASSARY Group Leader Materials Science Division Argonne National Laboratory assary@anl.gov

October 18 Minneapolis, MN

Argonne Major Research Initiatives

environmentally benign

microelectronics

for nuclear medicine

Facility

- Advanced Photo Source (APS)
- Argonne Leadership Computing Facility
- Center of Nanoscale Materials
- Materials Engineering Research Facility
 Centers
- Joint Center for Electrical Energy Storage
- Advanced Materials for Energy Water Systems Center
- Water-Al Initiative
- Science for Circular Economy

phenomena important to discovery

science and national security

Ē

Carbon Conversion

Fundamental and applied Research and Development Opportunities

- Circular Economy: Development of methods for CO₂ capture/ Utilization
 - Catalytic Conversion of CO₂ to value added chemicals
 - Chemical/Photo or Electrochemical routes
 - Applied science/ engineering expertise (TEA, LCA) and facilities (MERF)
 - Discovery of new and improved catalysts
 - High throughput Experimentation
 - Role of AI/HPC to accelerate Catalyst Discovery
 - Waste Carbon to Sustainable Aviation fuels
 - New catalysts and conditions
 - Data science and AI
 - Catalyst and Materials Genome for Carbon Utilization

Carbon Negative Earth Shot "CO₂ Refinery" – A Technology of CO₂ conversion to chemicals

<u>Concept of "CO₂</u> <u>Refinery"</u>

CO2RR Catalysis Science

 ✓ New electro-catalysts converts CO₂ to C₂ and C₃ ethanol, isopropanol, acetone, at 80~90% selectivity through electrolysis at near ambient T. Al- Solvent Engineering

 ✓ Solvent Engineering for Efficient CO₂
 Conversion

W.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Di-Jia Liu, Argonne National Lab, djliu@anl.gov

Materials for selective CO₂ reduction Two-Dimensional Conductive Cu-MOF (good TOF: 20.8 s-1)

(A) clean Cu-THQ surface, (B) COOH/ Cu-THQ, (C) CO/ Cu-THQ, (D) free energies for CO production on Cu-THQ, (E) BE(ads) of CO at different coverages on Cu-THQ.

Other Research directions:

- ✓ High entropy alloys for CO_2 conversion
- ✓ Photochemical conversion of CO_2
- ✓ Optimization of electrolytes for CO₂ electrochemical reactions
- Data-driven approach for next generation selective catalysts

L. A Curtiss, A. Salehi-Khojin et al., Adv. Materials 33 (10), 2004393 (2021).

Accelerate enabling technologies using computations and Al

Atomic, Mesoscale, reactor scale modeling

CCPC is part of ChemCatBio Consortium supported by EERE/BETO

https://www.energy.gov/eere/bioenergy/consortium-computational-physics-and-chemistry

Argonne 🧲

TAKE HOME MESSAGES

Conversion

- ✓The current state-of-the-art catalysts in eCO₂RR suffer largely from low reaction rates, insufficient C₂₊ product selectivity, high overpotentials, and industrial-scale stability.
- ✓ Overcoming the scientific/applied technical hurdles for commercial realization demands a holistic integration of catalytic designs, deep mechanistic understanding, and efficient process engineering.
- ✓ Special emphasis on accelerated mechanistic understanding and performance outcome is critical to guide the future design of eCO₂RR catalysts that can play a significant role in closing the anthropogenic carbon loop.

