State of Alaska Initiative to Create a CCUS Database State of Alaska, ACEP, ARE

Presented by:

Heather Beat, Petroleum Land Manager, PI, Division of Oil & Gas March 5, 2024

OVERALL PROJECT GOAL & BENEFITS

This project will support and accelerate the safe and socially equitable deployment of CCS in Alaska by offering technical and community support services and information sharing to CCS stakeholders.

The team will meet this goal by geologic data gathering, analysis, and sharing of information in areas of Alaska where storage facilities are likely to emerge – Cook Inlet Region

2023-03-10

MAJOR PROJECT OBJECTIVES

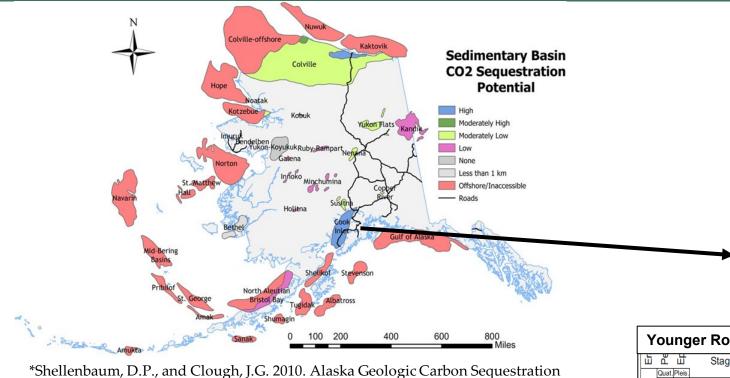
Establish a foundation for CCS by addressing technical challenges, environmental factors, and stakeholder engagement

- 1. Collect, compile, and distribute information relevant to CCS.
- 2. Identify environmental and socially sensitive areas.
- 3. Address questions, needs, perceptions, and attitudes toward CCS in communities.
- 4. Develop a data distribution plan and portal for the State of Alaska to share information, research, outreach, and regulation regarding carbon storage

PROJECT OVERVIEW

Who is involved:

- AK DNR Division of Oil and Gas and Division of Geological and Geophysical Survey (DOG and DGGS)
- Alaska Oil and Gas Conversation Commission (AOGCC)
 - Alaska Center for Energy and Power (ACEP)
 - Alaska Resource Education (ARE)
 - Cook Inlet Regional Incorporation (CIRI)
 - Institute of Social and Economic Research (ISER)



PROJECT LOCATION

*Shellenbaum, D.P., and Clough, J.G. 2010. Alaska Geologic Carbon Sequestration Potential Estimate: Screening Saline Basins and Refining Coal Estimates: California Energy Commission

(1) REGION	(2) IDENTIFIED & HYPOTHETICAL COAL RESOURCES (billions of short tons)	(3) AVERAGE COAL RANK	(4) ARI Estimated CBM Resources (based on daf) (Tcf)	(5) ARI E CO2 S Pote (Tcf)	torage	(6) USGS Estimated CBM Resources* (Tcf)	(7) CO2 Pote based on U Resou (Tcf)	ntial JSGS CBM	(8) REVISED ESTIMATE OF COAL SEAM CO2 STORAGE POTENTIAL (this report) (Gt)
1) Northern Alaska Province	3,753.00		621	1,862	98	17.2	120.4	6.32	5.83
A. Arctic Foothills Subprovince B. Arctic Coastal Plain Subprovince	1,290.00 1,910.00	Bituminous Subbituminous	No Data	Not Sub	divided	15	105	5.53	5.08
C. Sagavanirktok Field	553.00	Subbituminous				2.2	15.4	0.79	0.75
Total North Slope	3,753.00		621	1,862	98	17.2	120.4	6.32	5.83
2) Nenana Basin	17.00	Lignite to subbituminous	1	3	0	1	10	0.52	0.41
Cook Inlet Basin. Includes A. Southern, B. Susitina and C. Matanuska resources	1.570.30	Subbituminous to anthracite	136	407	21	140	980	50.58	43.00
TOTAL ALL "BASINS"	5,340.30	a.m.dene	758.00	2,273	120.00	158.20	1,110	57.32	49.24

*North Slope based on Roberts et al., 2008

	60°30' 60°30' 60°00' 60	o.
1	er Rocks - Nonmarine	
Neogene Miocene	Clamgulchian Homerian Beluga Fm. Tyonek Fm. Tyonek Fm.	0*
CENOZOIC gene ene Oigocene	Unnamed Nummerian Hemlock Cgl. 10 10 10	
CEN(Paleogene Eocene	Fultonian West Foreland Fm. Coal	
Pal	Franklinian Gas	
<u> </u>	Helmold et al (2018)	5

PROJECT TASKS - BREAKDOWN

Task 1.0 – Project Management and Planning

												Bı	udget	Peri	od								
				Q1			Q2		Q3		Q4			Q5			Q6		Q7		Q8	Fini	ish
TASK	START	END																					П
Project Award		-																					
Task 1.0 Project Management & Planning																							
Task 1.0 Project Management & Planning	Q1	End																					
Project Reporting	Q2	End				\star		\star		\bigstar			×			\star		\star		\star		7	T
Task 2.0 Societal Considerations & Impacts (SCI)																							
Task 2.0 SCI Assessment and Plans	Q1	End			\star											¥							
Task 2.1 Diversity, Equity, Inclusion, and Accessibility	Q1	End										\star											
Task 2.2 Justice40 Initiative	Q1	End												×									
Task 2.3 Community and Labor Engagement	Q1	End														¥							
Task 2.4 Investing in Job Quality and Skilled Workforce	Q1	End														, ,							
Task 2.5 Identify Environmentally Sensitive Areas	Q1	Q3																				工	工
Task 2.6 Identify and Create Spatial Data to Reflect the Community and Stakeholder Portfolio	Q4	End																					
Task 3.0 Assess Available Subsurface Data in Cook Inlet																							
Task 3.0 Assess Available Subsurface Data in Cook Inlet	Q1	Q4																					
Task 3.1 Identify potential storage reservoirs, their storage capacity, rock characteristics, and seals	Q2	Q5													•								
Task 3.2 Review seismic hazard analysis and risk assessment	Q1	Q4																					
Task 3.3 Articulate data gaps and needs	Q3	Q6																					
Task 4.0 Data Design & Distribution																							
Task 4.0 Data Design & Distribution	Q4	End																					
Key Milestone																							
Key Report Due																							

PROJECT TASKS - BREAKDOWN

Task 2.0 – Societal Considerations and Impacts (SCI) Assessment and Plans

Subtask 2.1 DEI&A

Subtask 2.2 Justice 40 Initiative

Subtask 2.3 Community and Labor Engagement

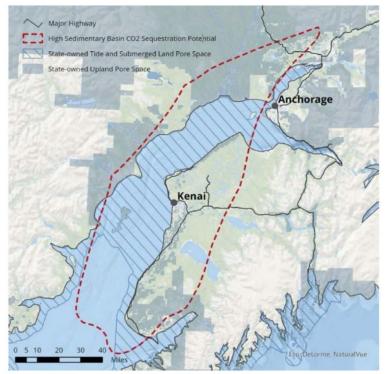
Subtask 2.4 Investing in job quality and a skilled workforce

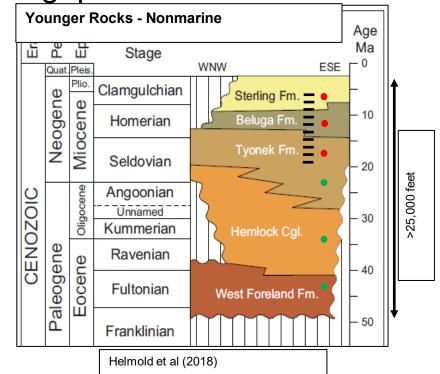
Subtask 2.5 Identify Environmentally sensitive areas

Subtask 2.6 Identify and create spatial data to reflect the CBP

TASK		2	024			2025							
		Q2	Q3	Q4	Q1	Q2	Q3	Q4					
1) Stakeholder Mapping	•		•										
2) Public Polling		•	•	4 4									
3) Workshop Dev and Implementation			•	++-	•								
4) Continued Stakeholder Engagement			1	' -									

Project Tasks - Breakdown

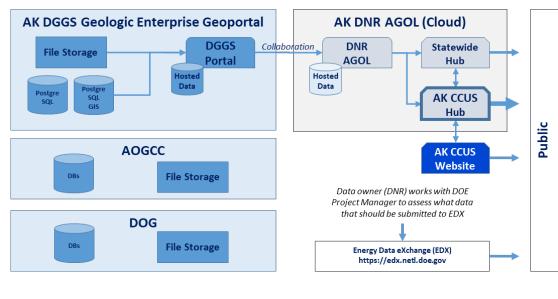


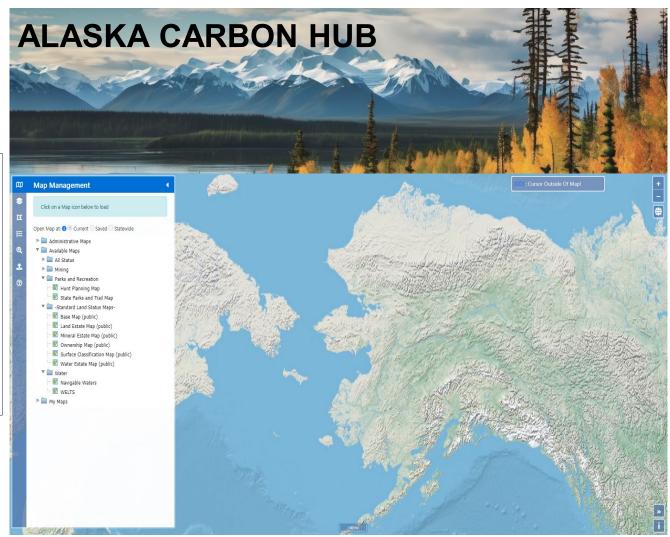

Task – 3.0 Assessment of Available Subsurface Data

Subtask 3.1 Identify potential storage reservoirs, capacity, rock characteristics, and seals

Subtask 3.2 Review seismic hazard analysis and risk assessment

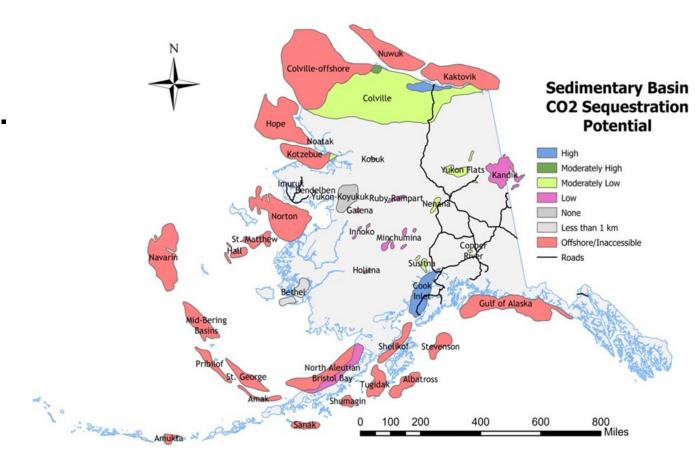
Subtask 3.3 Articulate data gaps and needs



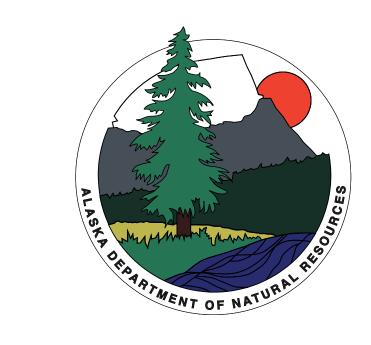


PROJECT TASKS - BREAKDOWN

Task – 4.0 Data Storage and Distribution



NEXT STEPS



- 1. Ongoing stakeholder engagement.
- 2. Generate content based on data gaps that were articulated.
- 3. Expand HUB to include other high potential basins for CCS.
 - North Slope
 - Interior Alaska

QUESTIONS?

Heather Beat Principal Investigator
Department of Natural Resources
907-269-8792
Heather.Beat@alaska.gov