Driving the Technology Innovation Ecosystem through Applied Research and Collaboration Solutions for Today | Options for Tomorrow

Brian J. Anderson, Ph.D. Director

MISSION

Discover, integrate and mature technology solutions to enhance the Nation's energy foundation and protect the environment for future generations

- Effective Resource Development
- Efficient Energy Conversion
- Environmental Sustainability

VISION

Be the Nation's renowned fossil-energy science and engineering resource, delivering world-class technology solutions today and tomorrow

- Technology Convener
- Knowledge and Technology Generation Center
- Responsible Steward

Evolving Topics in Coal

NATIONAL ENERGY TECHNOLOGY LABORATORY

Upgrading the Existing Fleet

Advancing Next-Gen Power Plants

Improving the performance, reliability, & efficiency of the existing coalfired fleet Advancing small-scale, modular coal plants that are highly efficient, flexible, & nearzero emissions Enhancing the value of coal as a feedstock & deriving new value-added products from coal

Pioneering New

Markets for Coal

Reducing the Cost of Carbon Capture

Reducing Water Use in Energy Production

Developing

advanced

computational &

simulation tools, &

transformational

technologies, to

reduce the cost of

CO₂ capture

Addressing water quality, sustainability, & availability for power generation

Carbon Capture, Utilization and Storage (CCUS)

Program Areas

Reducing the Cost of Carbon Capture

Integrated R&D Approach

Carbon Storage

Approaches

- Predicting and monitoring CO₂ plume and brine pressure front movement, stabilization, and impacts.
- Optimization of reservoirs for CO₂ storage capacity.
- Developing and validating risk-assessment strategies.
- Mitigating risks, such as leakage from old wells and induced seismicity.
- Carrying out (large-volume and Fit-for-Purpose) field tests for different storage types and depositional environments.

NATIONAL

ENERGY TECHNOLOGY

ΔΤΙΟΝΔΙ

2nd Generation Pilot-scale Technologies

Reduced Cost

\$100+/tonne

30+% Penalty

Reduced

Energy Penalty

~50% Reduction

~20% Penalty

15 Technologies Tested at Pilot Scale

Program

Activity

180+ Projects

Technologies Tested at Pilot Scale

TECHNOLOGY HIGHLIGHTS	PRINCIPAL DEVELOPER							
POST-COMBUSTION								
Imbedded Amine Sorbent*				ADA-ES				
Water-lean Amine Solvent				Fluor/PNNL				
Hybrid Solvent/Membrane				Gas Technology Institute				
Amino-silicone Solvent*				General Electric Company				
Amine/Imidazole Solvent Mixture* (Large Pilot)				ION Engineering				
Advanced Amine Solvent Process*				Linde/BASF				
Advanced Membrane Process*				MTR				
Nozzle-based Solvent Contactor*				Neumann Systems Group				
Mixed Salt Solvent Process*				SRI International				
Carbon-based Sorbent*				SRI International				
Alkalized Alumina Sorbent*				TDA Research				
Optimized Amine Solvent Process				University of Kentucky				
Piperazine Solvent/Flash Stripper*				URS/University of Texas				
PRE-COMBUSTION								
Ammonium Carbonate/Bicarbonate Solvent*				SRI International				
Integrated Sorbent Process				TDA Research				
*Project Completed	Processo 1	Cquipme	tuo					

5.07

Accelerating CCUS R&D Using Computational Methods

Data Analytics, Machine Learning and Artificial Intelligence

THANK YOU!

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

Petra Nova CO2 EOR CCS Plant

ENERGY

NATIONAL ENERGY

Direction of Fossil Energy Research

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY

Reducing the Cost of Carbon Capture

National Carbon Capture Center

DRAFT – Will update numbers and partners with Andy O'Palko

- 5 year \$150 Million of DOE Investment
- \$100 Million Capture Funding
- Independent Test Facility

Post-combustion Technology Testing

- PC4 Facility 4.3 MWe
- Actual PC flue gas
- Bench through pilot scale
- > 101,000 hours of testing
- > 30 Technologies tested
- US & 6 other countries

CLEARPATH Peabody ExonMobil

- World Class Carbon Capture Technology Test Facility -

CLOUD PEAK

ENERG

Maturing 2nd Generation Technologies

Research Triangle Institute's Water-Lean Solvent Process

DOE/FE/NETL has sponsored highly successful second-generation technologies that will dramatically reduce CO₂ capture costs. Research Triangle Institute's (RTI's) Water-Lean Solvent Process is one of those technologies.

Lab/Bench Scale Development

Initiated 2009/2010

- Proof of concept/feasibility in 2009 and lab-scale testing initiated in 2010
- Bench-scale testing initiated 2014
- Solvent formulation finalized
- Reboiler heat duty < 2.0 GJ/tonne
- Preliminary techno-economic analysis shows capture cost ≤ \$40/tonne

BACKGROUND

CHALLENGE:

- Current solvent capture technologies use mixtures of ~70% water and 30% amines to absorb CO₂
- The water has negative energy impacts and doesn't capture any of the CO₂ unlike the amines but the water controls the corrosivity and viscosity of the amines

RTI'S SOLUTION:

- Replace water with a hydrophobic non-aqueous solvent
- Total water in the mixture goes from ~70% down to ~5-10%

SIGNIFICANT RESULTS

Techno-economic analyses indicate:

Reduced Capital Costs

- Enhanced solvent performance results in smaller columns, heat exchangers, and footprint **Reduced Operating Costs**
- Lower energy requirements

Scale-Up Testing

Initiated 2016

- Testing at 60-kWe scale conducted using actual flue gas at SINTEF's Tiller Plant pilottesting facility in Norway
- 1500+ hours of parametric and long-term testing on coal derived flue gas
 Additional testing at the National Carbon Capture Center
- 570 hours at 50-kWe scale using coal-derived flue gas to evaluate operational issues

Large Pilot-Scale Testing Initiated 2018

Initiated 2018

- ~12 MWe scale testing at Technology Centre Mongstad (TCM) to evaluate the viability of the RTI solvent as a drop-in replacement for conventional capture systems
- Additional testing will modify TCM's existing equipment to evaluate optimized operation with the RTI solvent

Maturing 2nd Generation Technologies

NATIONAL ENERGY TECHNOLOGY LABORATORY

Membrane Technology and Research Advanced Membrane Process

DOE/FE/NETL has sponsored highly successful second-generation technologies that will dramatically reduce CO₂ capture costs. MTR's Advanced Membrane Process is one of those technologies.

Lab/Bench Scale Development

Initiated 2007

- Development of advanced Polaris membrane with increased permeance 10x that of existing membranes and CO₂/N₂ selectivity > 20
- Novel countercurrent sweep CO₂ recycle process design reduced the need for energy intensive compression
- 10,000 hours of stable testing at 1 tonne/day scale on actual flue gas confirmed improved permeance and selectivity

BACKGROUND CHALLENGE:

- CO₂ concentration in post-combustion flue gas was considered too low to provide sufficient driving force for membrane-based separation
- Permeance and selectivity of 1st generation membranes were too low for costeffective separation of low-CO₂-concentration gases

MTR'S SOLUTION:

- Materials development efforts increased permeance by 3x while maintaining selectivity
- Innovative process design resulted in increased CO₂ concentration in membrane feed gas, enhancing driving force

SIGNIFICANT RESULTS

- Establish Viability of Membrane-based Post-Combustion Capture
- Materials and process innovations overcome limitations of low driving force Nature of Membrane Systems Provides Potential Solutions to Challenging Problems
- Inherently modular, low-cost, high-volume manufacturing; simplifies scale up

Small Pilot-Scale Testing

- Initiated 2011
- Over 1,000 hours of testing at 1 MWe (20 tonnes/day) scale at the National Carbon Capture Center
- Validated countercurrent sweep process and a low pressure-drop sweep module that reduces parasitic energy losses
- Revealed effective boiler operation in the presence of recycled CO₂ to increase flue gas CO₂ concentration, reducing cost

Large Pilot-Scale Testing Initiated 2018

• Detailed techno-economic analysis and preliminary plant design with engineering/cost estimates for construction of a 10 MWe pilot facility at the Wyoming Integrated Test Center

• Field-scale testing at Technology Centre Mongstad to demonstrate modular membrane concept for use in commercial-scale systems

Driving Computational Science

Center for High Performance Computing JOULE 2.0

With a speed of **3.608 PFLOPS**, Joule 2.0 ranks:

55th in the World

21st in the United States

- More CPU cores (73,240 vs. 24,192)
- More memory (271 TB vs. 73 TB)
- Faster (3.608 PFLOPS vs. 0.5 PFLOPS)
- Newer Technology (40 cores per node vs. 16)

Center for Data Analytics and Machine Learning

Phase I – B94: **128** GPU Units **19** Petabytes of Storage

Phase II – B83: 768 GPU Units 60 Petabytes of Storage

66 GB/s write and 122 GB/s read capability

Integrated GPU and CPU will enhance machine learning and data analytic capabilities at all three research locations

Driving Down the Cost of Carbon Capture

Computational tools to rapidly screening of novel carbon capture materials

- NETL in-house researchers used high-throughput computational methodology to screen over <u>1 million</u> possible mixed matrix membranes (MMMs).
- NETL-developed polymers were found to enhance mechanical stability.
- MMMs, with NETL developed polymer, were estimated to decrease the cost of carbon capture from <u>\$63 to \$48 per metric ton</u> of CO₂ removed.

SMART-CS Initiative

Primary Goals

Real-Time Visualizat "CT" for the Subsurfac	tion ce	Rapid Prediction Virtual Learning		Real-Time <i>"Advanced</i>	e Forecasting Control Room"
Technical Team					
Carnegie Mellon University	SALAMOS	NATIONAL ENERGY TECHNOLOGY LABORATORY	BATT	 E	EERC.
Lawrence Livermore National Laboratory	COLORADO SCHOOL OF	OAK RIDGE	Per	nnState	THE UNIVERSITY OF UTAH®
Pacific Northwest NATIONAL LABORATORY	Bureau of Economic Geology	Sandia National Laboratories		ILLINOIS AT URBANA-CHAMPAIGN	

<u>S</u>cience-informed <u>M</u>achine Learning to <u>A</u>ccelerate <u>R</u>eal <u>T</u>ime (SMART) Decisions in Subsurface Applications

U.S. DEPARTMENT OF ENERGY

Computational/Experimental study of CO₂ to CO Conversion

 Electrochemical CO₂ reduction reaction (CO₂RR) is a promising approach for converting fossil fuel emissions into environmentally sustainable chemicals and fuels.

Predict Catalytic Activity of Yet-To-be-Synthesized Materials

- NETL researchers simulated Au-Cu nanoclusters under electrochemistry conditions using an inhouse computational electrochemistry code.
 - Experimental studies validated the computational predictions.
- Density functional theory calculations were performed on NETL's Joule supercomputer.
- The alloys retained the activity and selectivity of pure gold with an approximately 50 percent reduction in precious metal content.

Technology Development Pathway

Scale

Fundamental Studies

Investment

Technology Confidence

Private Sector Cost Share

NATIONAL ENERGY TECHNOLOGY LABORATORY

KNOWLEDGE-BASED DECISION MAKING

- Systems Engineering and Integration
 - Engineering analysis
 - Pre-FEED/FEED studies
 - NEPA

Decision Science and Analysis

- Screening studies
- Techno-economic analysis
- Technology Readiness
 Assessments

IRL

An Active Portfolio from Concept to Market Readiness

0

IR

DISCOVERY Concept identified/proven at laboratory-scale

COMMERCIALIZATION

Technology available

for wide-scale market use

U.S. DEPARTMENT OF ENERGY

