WELLBORE INTEGRITY RESEARCH PRIORITIES FOR NUCLEAR WASTE DISPOSAL IN DEEP BOREHOLES

Andrew P. Bunger, Ph.D.

Assistant Professor Dept of Civil and Environmental Engineering Dept of Chemical and Petroleum Engineering NETL RUA Professor

University of Pittsburgh, Pittsburgh, PA, USA bunger@pitt.edu

Daniel G. Cole, Ph.D.

Associate Professor, Department of Mechanical Engineering and Materials Science Director Nuclear Engineering Program Than

University of Pittsburgh, Pittsburgh, PA, USA dgcole@pitt.edu

Thanks to: Richard Jackson, GeoFirma Maurice Dusseault, U Waterloo Emmanuel Detournay, U Minnesota Seth Polepko, PA DEP Doug Catalano, PA DEP

USEA, 21 November 2014

Nuclear Waste

- SNF: spent nuclear fuel
 - From DOE and Navy reactors
 - Maybe commercial reactors

- HLW: high-level waste
 - Fission products
 - From processing of reactor fuels

HLW forms

- Vitrified HLW
 - uniform characteristics for disposal
- Other engineered HLW
 forms
 - Ceramic and metal wastes from treatment of sodium bonded fuels
- Salts, granular solids, and powders
 - Calcine HLW at INL

DOE High-Level Waste

Source: Blue Ribbon Commission on America's Nuclear Future: brc.gov

Source: BRC staff using information from DOE and other sour

Deep Wellbore HLW Disposal: Current Concept

Deep Wellbore HLW Disposal: Current Concept

SAND2011-6749

Plugging with Bentonite

Pusch, R. (1983). Borehole sealing for underground waste storage. *Journal of geotechnical engineering*, *109*(1), 113-119.

Pusch, R. (1981). *Borehole sealing with highly compactd Na bentonite*. Kaernbraenslesaekerhet, Stockholm (Sweden).

Borgesson, L., & Ramqvist, G. (1987). *Final Report of the Borehole, Shaft, and Tunnel Sealing Test-Volume 1: Borehole Plugging.* Swedish Nuclear Fuel and Waste Management Company.

Plugging with Bentonite

Blümling, P. (2005). Borehole sealing project at the Grimsel test site. Geotechnical & Geological Engineering, 23(6), 843-858.

Deep Wellbore HLW Disposal: Current Concept

Preferred Site Characteristics for Planned DOE Field Experiment (modified from 10/24/2014 RFI)

- Topographically flat, <2km to basement rock
- Away from urban and/or petroleum activities
- Not too hot and not already contaminated
- Low probability of earthquakes or volcanos
- No known major faults or shear zones in basement rock

One may wish to add...

- Not too overpressured (Geodynamics 3-4km deep geothermal wells in Australia were ~5000 psi (35 MPa) overpressured relative to hydrostatic)
- Differential stresses low (to help wellbore stability)

Intention of Design

- "Cap rock" concept which works as long as
 - Permeability of top 1km of basement rock is low and as expected
 - Well seal in top 1km of basement rock results in permeability less than or equal to the rock

- And it is ostensibly insensitive to
 - Drilling/heating induced damage of rock below cap
 - Cement flow/seal behind lower casing/liner
 - Long term corrosion resistance casing/liner

(though latter 2 are important for ~30" groundwater string)

Critical Points (1 of 2)

- Wellbore stability during drilling and removal of intermediate string
- Casing/liner and canisters that withstand stresses and corrosion during construction and emplacement (~0.5-2 years)

Critical Points (2 of 2)

- Plug that is low enough perm, strong enough, effective even with poor hole conditions
- Fluid in emplacement zone able to dissipate into rock as it heats
- Heating and accompanying pore pressure increase does not damage "cap rock" or drive appreciable upward flow

Root of the problems...

- Wellbores concentrate stresses
- Flowing materials follow path of least resistance
- Completions materials interact with surrounding environment (and surrounding environment will be changing)
- Heating expands materials

Wellbores concentrate stresses

Acoustic Reflectivity Image

http://petrowiki.org/images/3/3f/Devol2_1102final_Page _026_Image_0001.png

Tingay, M., Reinecker, J., & Müller, B. (2008). Borehole breakout and drillinginduced fracture analysis from image logs. World Stress Map Project Stress Analysis Guidelines, 1-8. **Problems for Deep Borehole NW Storage from Breakouts**

- Stuck drill pipe
- Deflection of well trajectory
- Preventing retrieval/milling of intermediate casing to expose rock to plug
- Potential for channels that are not plugged

Beswick, J. 2008. Status of Technology for Deep Borehole Disposal. Contract No. NP 01185. EPS International.

Breakouts in Basel, Switzerland

Geothermal Well

Because wellbores concentrate stresses and flow follows path of least resistance

- Enabling drilling at higher mud pressures "wellbore strengthening"
- Characterizing stress, pore pressure, and fractures in proposed targets
- Developing/proving alternate or novel sealing approaches that are more robust to non-ideal holes
- Predicting induced stresses during emplacement of clay seals at depth

Heidbach et al. 2008. World Stress Map.

Synopsis in this month's JPT: **Pushing the Frontier Through Wellbore Strengthening**,

https://www.spe.org/jpt/article/7620-pushing-thefrontier-through-wellbore-strengthening/

Completions materials interact with surroundings Coal String Example

Courtesy of Doug Catalano, PA DEP, presented at North American Wellbore Integrity Workshop, Pittsburgh, 11 August 2014, used with permission.

Completions materials interact with surroundings Habanero-3 Deep Geothermal Well, Australia

Source: Geodynamics presentation in Drill Well Forum, 3 Dec 2009 ∃risbane, Australia ttp://www.drillsafe pres/DrillVell Forum org.au/12-Dec09 EODYNAMICS mike <u>b</u> haba

Completions materials interact with surroundings Habanero-3 Deep Geothermal Well, Australia

Longitudinal cracks formed on the outside of the 9-5/8" casing indicating stress corrosion cracking resulting from hydrogen migrating to areas of high residual stress on the outer surface of the 9-5/8" casing.

> Habanero-3 8 June 2009

Source: Geodynamics presentation in Drill Well Forum, 3 Brisbane, Australia Jero 60 <u>http://www.drillsafe.</u> pres/DrillWell ω casing.pd Forum .org.au/12-Dec09 GEODYNAMICS mike Dec 2009 b. haba

Completions materials interact with surroundings Habanero-3 Deep Geothermal Well, Australia

18-5/8" not designed to contain reservoir pressure 18-5/8" casing rated to 4840 psi (internal yield pressure – Tenaris web site)

- Principal cause of the incident was the design and use of TN150DW steel for the two barrier strings
- Hydrogen embrittlement caused the cracks in the TN150DW casing
- H₂S may not have been the primary source of the hydrogen. The lack of corrosion by-products (iron sulphide or pyrrhotite) indicate CO₂ may have produced the hydrogen required for hydrogen embrittlement
- Siderite or iron carbonate (FeCO₃) was found on the surface of the 9-5/8" casing and 7" tubing.
- The corrosive reaction is:
 - Fe + CO₂ + H₂O \implies FeCO₃ (Siderite) + H₂

Brisbane, Australia Source: Geodynamics presentation in Drill Well Forum, 3 60 <u> http://www.drillsafe.</u> pres/DrillWell Forum <u>.org.au/12-</u> Dec09 GEODYNAMICS mike bill haba Dec 2009

nero

casing.pd

Because completions materials interact with surroundings

- Characterizing and predicting geochemistry
- Placement dynamics and evolving transport properties of clay-based plugging materials including mineral alteration
- Developing sealing materials that are either resistant to or resilient with respect to degradation
- Developing casing materials that are either resistant to or resilient with respect to corrosion especially during construction

Resistant: Inert to or shielded from degrading processes Resilient: Adaptive/seal healing in response to degrading processes Heating expands: Well recognized example (though still nontrivial)

Parts of completion expand at different rates

- Formation of microannulus
- Casing failure

Fig. 2 - Eccentric Loading From Slanted Hole

Heating expands: Less-often recognized example

THE Experiment at Canadian URL

Berchenko, I., Detournay, E., Chandler, N., & Martino, J. (2004). An insitu thermo-hydraulic experiment in a saturated granite I: design and results. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1377-1394.

THE experiment at Canadian URL

THE experiment results

Fig. 16. Normalized pore pressure measured at PZ6 during the heater tests.

Fig. 15. Normalized pore pressure measured at PZ1 during the heater tests.

Because heating expands

- Completion materials/construction that does not result in failure upon subsequent heating, especially during construction
- Heating paths that do not result in pore-pressureinduced hydrofractures, especially in "cap rock"
 - Much more power than previous experiment
 - ...but distributed over much larger length
- Thermo Hydro Mechanical (THM) modeling that is
 - Informed by laboratory experiments
 - Verified by field experiments

Other issues

- Intervention: Fixing a leak in a plugged well
- Monitoring
 - Where? What temperature?
 - Some topics:
 - Contaminant transport models to guide sensor placement
 - Sensors to withstand extreme temperatures

Baker Hughes, FracPoint

Research Priorities

- Drilling: Promoting a good quality hole
- Plugging
 - In presence of breakouts, induced and natural fractures
 - Chemical and mechanical behavior of clay-based plugging materials
 - During placement
 - In long term
- Casing and canister materials: Surviving well construction
- Thermo Hydro Mechanical issues: Preventing cap-rock
 damage
- Monitoring: Where, What, For how long?