Low Carbon Energy Capital Project

Carbon, Capture, Use, and Storage (CCUS)

Team - Initiative 1

Makpal Sariyeva, Paty Hernandez, Brad Peurifoy Faculty Mentor: Charles McConnell

April 14th, 2021

Houston as a CCUS hub

Why CCUS?

- CCUS essential to meet global climate targets
- Immediate emissions reductions from decarbonization
- Emission targets can't be achieved with clean energy alone
- Affordable, reliable, sustainable energy needed to reduce energy poverty

What Impacts?

- Long term sustainability of industries
- Set the stage for Houston as a decarbonization center of USA
- Globally recognized for energy skillset, knowledge, and technology
- Low carbon products advantage in global market

Why Houston?

- "Energy capital to sustainable energy capital"
- Infrastructure and scale suitable for "cluster" economics
- Vast, proximal geologic storage resources
- Energy companies strategies are shifting to "net-zero"

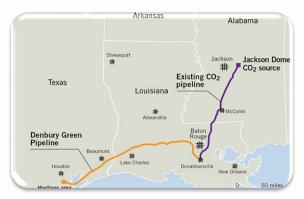
Objectives and Findings

Objectives

- Develop a staged 3x10yr CCUS deployment analysis roadmap
- Utilize the NPC national analysis construct and regionalize for local impacts
- Analyze the emissions AND economic investment impact in the Houston Area
- Assess and position CCUS "optionality" to alternative geologic formations for both storage and EOR – as well as -for the extended energy producing network in the greater US Gulf Coast in all directions from Houston

FINDINGS

- Investment and risk hurdles will require "strategic investment"
- A mix of EOR and pure storage provides an investment portfolio approach for CCUS
- Current base of target geologies and infrastructure options are far greater than the stationary emissions in the 9 county Houston region long term expansion impact
- Federal, state and local government policies must support/accelerate this transition



Key Challenges to Address in Project

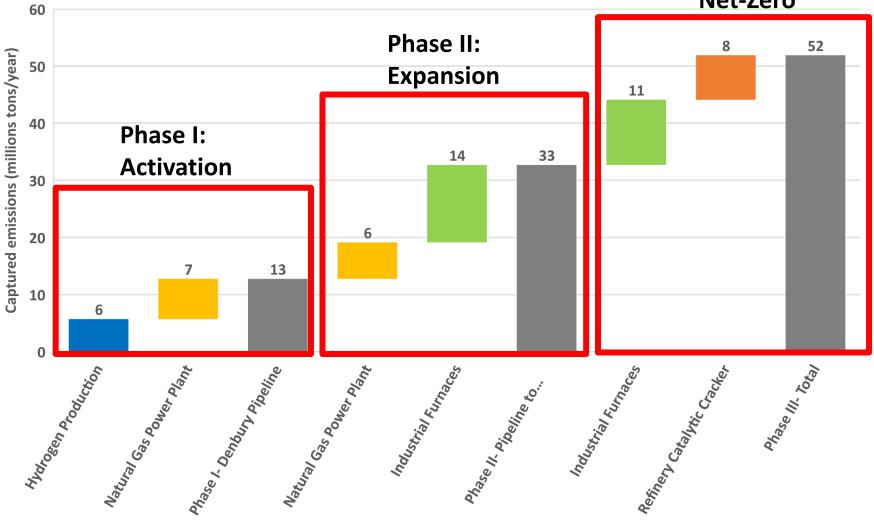
Carbon Capture

Transportation

Storage

- Technology maturity
- Capture Cost of CO₂
 (3/4 of total CCUS cost)
- Electricity cost for compression
- Separation cost to purify CO₂

- Permits & Regulations
- Public acceptance
- Eminent Domain
- Cost of pipeline design and operating expense
- Infrastructure improvements


- Primacy
- Class 6 wells
- Low cost of oil
- Cost of surveillance (Liability for releases)
- Induced seismicity

Taking Houston to Net-Zero

Phase III: Net-Zero

Phase I: Activation (2030)

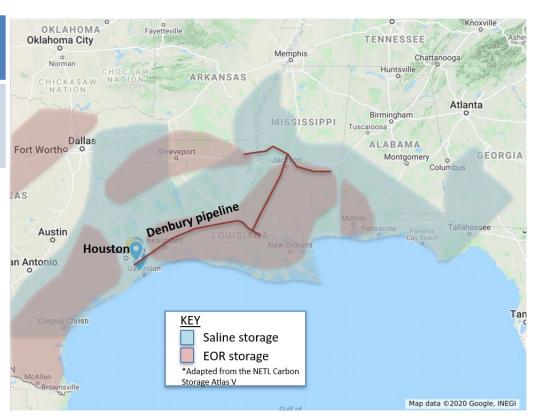
Capture

Facility type	Captured emissions (MM tons/yr)	Total investment (bil US\$)
Hydrogen	5.7	\$1.1
Natural gas power plants	7	\$2.5

Transport

Pipeline	Available capacity (MM tons/yr)	Total investment (bil US\$/yr)
Denbury	12.9	\$0.12

- **Hydrogen emissions prioritized** due to cheaper capture cost.
- Natural gas power plants second due to increasing pressure from investors.
- Denbury currently utilized at 1/3 capacity.



Phase I: Activation (2030)

Storage

Location	Available storage (bil tons)	Total investment (bil US\$/yr)
Gulf Coast EOR	1.4	
Gulf Coast saline	1,500	\$0.12

- Significant EOR storage is available along Gulf Coast in the form of disparate oil fields.
- Denbury has identified multiple
 EOR fields along the pipeline's path.
- Saline storage is sufficient to handle Denbury capacity for 75 years.

Gutierrez Energy Management Institute

Phase I: Economic Model

Discounted cash flow model

- Phase I only
- Combined hydrogen/natural gas
- Denbury pipeline
- Toggle ratio of saline storage to EOR
- Outputs NPV and IRR

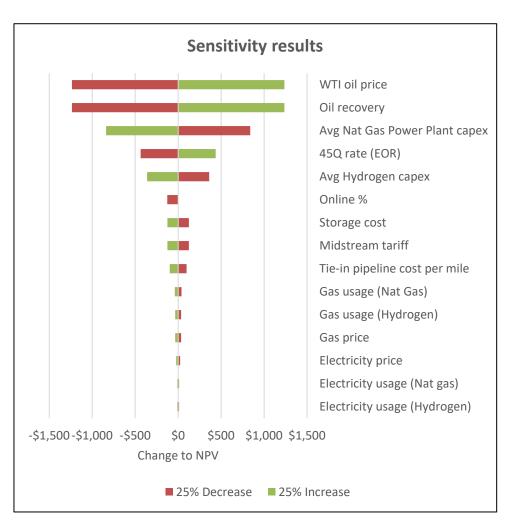
Assumptions

- NPC capture facility reference costs
- Gaffney Cline estimates for regional gas and electricity costs
- Discount rate: 12%
- Inflated oil, gas, and electricity annually

Scenarios

- 100% EOR scenario and varied key inputs by +/-25%
- 100% saline scenario and varied key inputs by +/-25%
- Oil price/45Q rate required for positive NPV

	Inputs		units	Assumpti	one	Hydrogen C nits	Capex		units	Opex		inits		Inpu	ite	units	Cape	.ev
				bbls produced per metric ton of CO2														
	aptured emissions	5,414,933 to		injected		arrels	Multiplier	13.54		Electricity usage		////IVh/ton		Captured emissions	7,040,654		Multiplier	
	apacity per capture unit installed	400,000 to		Project life	20 y		Capture capex (total)	1,063,289,854		Electricity price		MVVhr		Capacity per capture			Capture capex (total	2,468,92
	nline percentage	100% %		45Q rate (EOR)		/metric ton	1st year capex	20%		Gas usage		MBtu/ton		Online percentage	100%		1st year capex	
%	saline storage	0% %		45Q rate (saline)		/metric ton	2nd year capex	50%		Gas price		/MMBtu		% saline storage	0%	%	2nd year capex	
				WTI oil price	40 S		3rd year capex	30%		Opex, non-energy, annua		6 of capex					3rd year capex	
				Inflation	3% 9		Avg Hydrogen capex	78,545,000		Midstream tariff		/ton					Avg Nat Gas Power	527,50
				Tax rate	21% 9		Tie-in pipeline cost per n			Storage cost	10	/ton						
				Discount rate	12% 9		Length of tie-in line		miles									
				Depreciation	7 y	ears	Total cost of tie-in line	\$ 302,000,000.00	\$									
o	il Price (infated annually)	\$40.00	\$41.00	\$42.03	\$43.08	\$44.15	\$45.26	\$46.39	\$47.55	\$48.74	\$49.95	\$51.20	\$52.48	\$53.80	\$55.14	\$56.5	\$57.93	
G	as price (inflated annually)	\$2.00	\$2.05	\$2.10	\$2.15	\$2.21	\$2.26	\$2.32	\$2.38	\$2.44	\$2.50	\$2.56	\$2.62	\$2.69	\$2.76	\$2.8	\$2.90	
E	lectricity price (inflated annually)	\$10.00	\$10.25		\$10.77	\$11.04	\$11.31	\$11.60	\$11.89	\$12.18	\$12.49	\$12.80	\$13.12	\$13.45		\$14.1		
V	Pars	- 1	-	2	4		e	7		0	10	11	12	13	14	1:	16	
	Q Revenue (saline storage)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00		\$0.0		
41	Q Revenue (EOR storage)	\$0.00	\$0.00		\$435,945,548,85	\$435.945.548.85	\$435,945,548,85	\$435 945 548 85	\$435 945 548 85	\$435 945 548 85	\$435 945 548 85	\$435 945 548 85	\$435,945,548,85		\$435 945 548 85			\$435,945
	etroleum revenue	\$0.00	\$0.00			\$1 099 891 008 99	\$1,127,388,284,21		\$1 184 462 316 10	\$1,214,073,874.00		\$1 275 536 363 87	\$1 307 424 772 97				\$1,443,152,317.93	
	otal Revenue	\$0.00	\$0.00	\$0.00		\$1 535 836 557 84		\$1.591.518.540.17	\$1 620 407 864 95		\$1,680,371,269,70	\$1,711,481,912,72	\$1,743,370,321,82				\$1,879,097,866,78	
	otarrevende	00.00	00.00	90.00	\$1,000,000,011.00	¥1,000,000,001.01	\$1,000,000,000.00	01,001,010,010.11	01,020,101,001.00	\$1,000,010, IEE.00	#1,000,011,E00.10	01,111,101,012.12	01,710,010,021.02	01,110,000,011.11	41,000,000,100.00	01,010,000,020.71	\$1,010,007,000.70	01,010,110
Н	ydrogen capture capex	\$212,657,970.77	\$531,644,926.93	\$318,986,956.16	\$0.00	\$0.00		\$0.00			\$0.00	\$0.00	\$0.00	\$0.00		\$0.0		
apex N	at gas power plant capex	\$493,785,114.72 \$	1,234,462,786.80	\$740,677,672.08	\$0.00	\$0.00		\$0.00			\$0.00	\$0.00	\$0.00	\$0.00		\$0.0		
Ti	e-in line capex	\$100,666,666.67	\$100,666,666.67	\$100,666,666.67	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.0	\$0.00	
E	lectricity (Hydrogen)	\$0.00	\$0.00	\$0.00	\$10,496,323,77	\$10.758.731.88	\$11,027,700,16	\$11.303.392.66	\$11.585.977.48	\$11.875.626.91	\$12,172,517.59	\$12,476,830,53	\$12 788 751 29	\$13.108.470.07	\$13,436,181,82	\$13,772,086,3	\$14.116.388.53	\$14.469
G	as (Hydrogen)	\$0.00	\$0.00	\$0.00	\$29,739,584.00	\$30,483,073.60	\$31,245,150,44	\$32,026,279.21	\$32,826,936.19	\$33,647,609.59	\$34,488,799.83	\$35,351,019.83	\$36,234,795.32	\$37,140,665.20	\$38,069,181.83	\$39,020,911.3	\$39,996,434.16	\$40,998
	pex, non-energy (Hydrogen)	\$0.00	\$0.00		\$21,265,797.08	\$21,265,797.08	\$21,265,797,08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.0		
ex E	lectricity (Natural gas)	\$0.00	\$0.00	\$0.00	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.9	\$11,265,045.98	\$11,265
G	as (Natural gas)	\$0.00	\$0.00	\$0.00	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.9	\$39,427,660.94	\$39,427
O	pex, non-energy (Natural gas)	\$0.00	\$0.00	\$0.00	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.4	\$49,378,511.47	\$49,378
Ti	ransport tariff	\$0.00	\$0.00	\$0.00	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555
S	torage cost	\$0.00	\$0.00	\$0.00	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555
E	BITDA (Rev-capex-opex)	-\$807,109,752.16 -\$	1,866,774,380.40	-\$1,160,331,294.91	\$1,098,325,282.41	\$1,124,145,994.69	\$1,150,612,224.78	\$1,177,740,110.62	\$1,205,546,193.61	\$1,234,047,428.67	\$1,263,261,194.61	\$1,293,205,304.69	\$1,323,898,017.53	\$1,355,358,048.19	\$1,387,604,579.62	\$1,420,657,274.3	\$1,454,536,286.40	\$1,489,262
D	epreciation	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07										
E	BIT (Rev-OPEX-Depreciation)	-\$1.354.854.813.23 -5	2.414.519.441.47	-\$1.708.076.355.98	\$550.580.221.35	\$576.400.933.63	\$602.867.163.71	\$629.995.049.55	\$1,205,546,193,61	\$1,234,047,428,67	\$1,263,261,194,61	\$1,293,205,304,69	\$1.323.898.017.53	\$1.355.358.048.19	\$1,387,604,579,62	\$1.420.657.274.3	\$1.454.536.286.40	\$1,489,262
	OPLAT (EBIT*(1-Tax Rate))	-\$1,070,335,302,45 -\$		-\$1.349.380.321.22	\$434.958.374.86	\$455,356,737,57	\$476,265,059,33	\$497.696.089.15	\$952.381.492.95	\$974.897.468.65	\$997.976.343.74	\$1,021,632,190,71	\$1.045.879.433.85				\$1,149,083,666,26	
	CF	-\$1,329,699,993,54 -\$		-\$1.961.966.555.06	\$982,703,435,93	\$1,003,101,798.63		\$1.045.441.150.22	\$952.381.492.95	\$974.897.468.65	\$997.976.343.74	\$1.021.632.190.71	\$1.045.879.433.85				\$1,149,083,666,26	
P	V of FCF	-\$1,187,232,137.09 -\$			\$624.525.799.24	\$569,186,899,56	\$518,795,395,40		\$384.650.911.64	\$351.557.800.52	\$321,321,673,43	\$293.694.842.01	\$268.451,200.89		\$224.305.797.36			
P	roject NPV	\$113,543,909.91			, , , , ,													
IF		12%																



Phase I: Economic Model Results

Combined hydrogen and natural gas power plant model - 100% EOR

Sensitivity 1							
Base Case Assumptions (100% EOR)							
Online %	100						
bbls produced per metric ton of CO2	2	barrels					
45Q rate (EOR)	\$35	\$/metric ton					
45Q rate (saline)	\$50	\$/metric ton					
WTI oil price	\$40	\$/bbl					
Avg Hydrogen capex	\$78,545,000.00	\$/unit					
Avg Nat Gas Power Plant capex	\$527,505,000.00	\$/unit					
Tie-in pipeline cost per mile	\$2,000,000.00	\$/mile					
Length of tie-in line	151	miles					
Electricity usage (Hydrogen)	0.18	MWh/ton					
Electricity usage (Nat gas)	0.16	MWh/ton					
Electricity price	\$10	\$/MWhr					
Gas usage (Hydrogen)	\$2.55	MMBtu/ton					
Gas usage (Nat Gas)	\$2.80	MMBtu/ton					
Gas price	\$2	\$/MMBtu					
Opex, non-energy, annual	0.02	% of capex					
Midstream tariff	\$10.00	\$/ton					
Storage cost	\$10.00	\$/ton					
NPV	\$ 113,543,909.91						
IRR	12%						

- Project can be NPV positive with 12%
 IRR today.....however
- US40/bbl price required for 20 years for project with high risk potential
- Most influential parameters include: oil price, recovery factor, nat gas capex, and 45Q rate

Key Take-aways

Phase I (present to 2030):

- Focus on low cost strategic CO₂ Houston emissions: 5.7million tons/yr from Hydrogen SMR
 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton

Phase II (2040):

- Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant
 13.5 million tons/yr from Industrial Processes Refining and Pet Chem
- Build pipelines to the East/Central Texas: 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
- East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline

Phase III (2050):

- Expand capture to include: 11.4 million tons/yr from Industrial Furnaces
 7.8 million tons/yr from Refinery Catalytic Cracker
- Build pipeline to the Permian: 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
- Permian available geologic storage: 4.8 billion tons of EOR and 1 trillion tons of saline

Acknowledgements

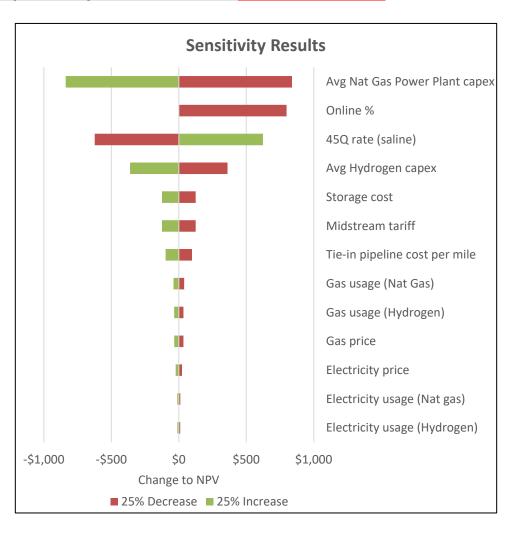
C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute

<u>Special thanks</u>: Jane Stricker, Mike Godec, Steve Melzer, Scott Nyquist, and Nigel Jenvey!

Thank you!

Appendix

- Phase I- Saline Economic Analysis (slide 13)
- Phase II- Analysis (slides 14-16)
- Phase III- Analysis (slides 17-19)
- Key Takeaways (slide 20)

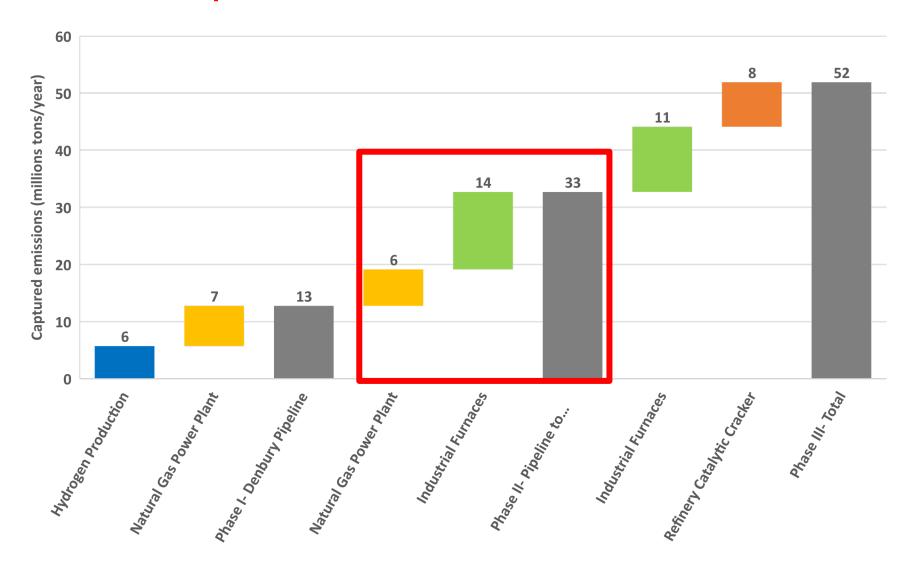


Phase I: Economic Model Results

Combined hydrogen and natural gas power plant model - 100% storage

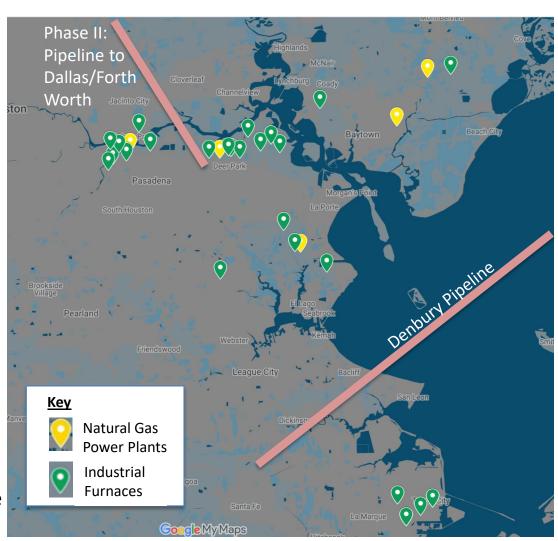
Sensitivity 2						
Base Case Assumptions (100% Saline)						
Online %	100					
bbls produced per metric ton of CO2	2	barrels				
45Q rate (EOR)	\$35	\$/metric ton				
45Q rate (saline)	\$50	\$/metric ton				
WTI oil price	\$40	\$/bbl				
Avg Hydrogen capex	\$78,545,000	\$/unit				
Avg Nat Gas Power Plant capex	\$527,505,000	\$/unit				
Tie-in pipeline cost per mile	\$2,000,000	\$/mile				
Length of tie-in line		miles				
Electricity usage (Hydrogen)	0.18	MWh/ton				
Electricity usage (Nat gas)	0.16	MWh/ton				
Electricity price	\$10	\$/MWhr				
Gas usage (Hydrogen)	2.55	MMBtu/ton				
Gas usage (Nat Gas)	2.8	MMBtu/ton				
Gas price	\$2	\$/MMBtu				
Opex, non-energy, annual	0.02	% of capex				
Midstream tariff	\$10	\$/ton				
Storage cost	\$10	\$/ton				
NPV	\$ (3,583,733,634.47)					
IRR	-3%					

- Project is grounded in 12% all equity return criteria....and....
- US\$+100/Ton 45Q price needed today for positive project @12% all equity
- Most influential parameters include: capex, online %, 45Q rate, hydrogen and NGCC capex



Phase II: Expansion - FW Basin and Offshore

Phase II: Expansion (2040)

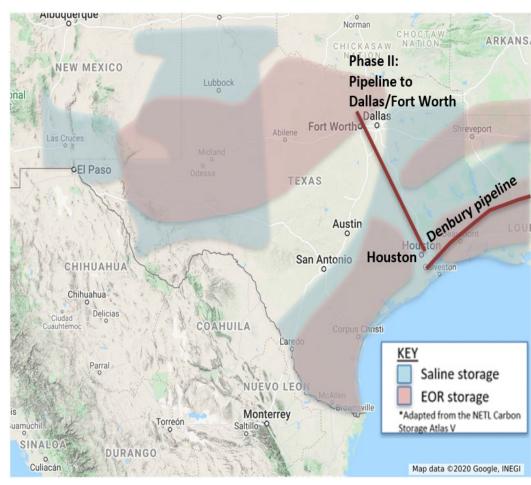

Capture

Facility Type	Captured emissions (MM tons/yr)	Total Investment (bil US\$)
Natural Gas Power Plant	6.4	2.2
Industrial Furnaces	13.5	6.4

Transport

Pipeline	Available capacity (MM tons/yr)	Total Investment (bil US\$)
East/Central Texas	20	\$0.5

- Build 250-Mile Houston -to-East/Central Texas Pipeline
- Industrial Furnaces are included to expand annual capture of CO₂
- Additional Natural Gas Power Plants are involved in the expansion of capacity transportation

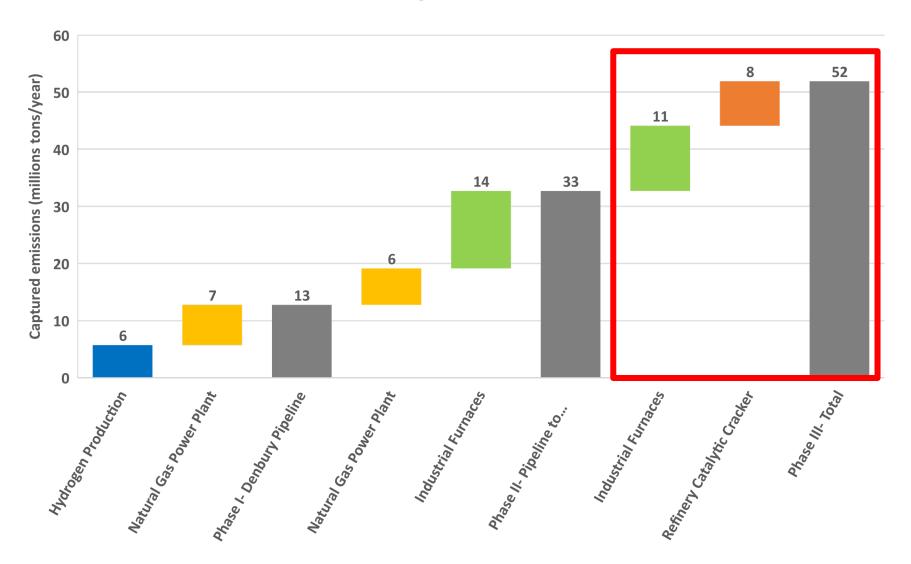


Phase II: Expansion (2040)

Storage

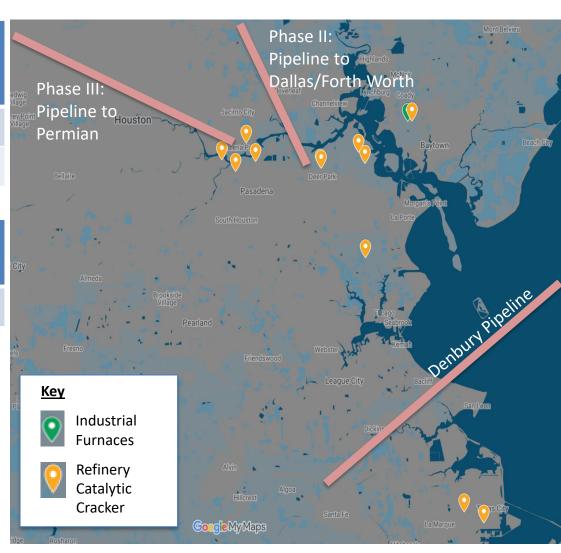
Location	Available storage (bil tons)	Total Investment (bil US\$/yr)
East/Central Texas EOR	3.6	
East/Central Texas saline	501	TBD

- EOR and Saline storage is available in East/Central Texas
- Leveraging the demand for CO₂ EOR, offering a relatively larger economic benefit



Phase III: At-Scale - Taking Houston to Net Zero

Phase III: At-Scale (2050)

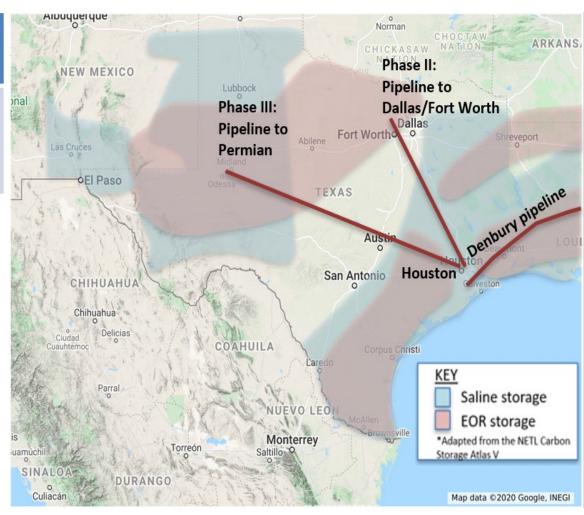

Capture

Facility Type	Captured emissions (MM tons/yr)	Total Investment (bil US\$)
Industrial Furnaces	11.4	2.8
Refinery Catalytic Cracker	7.8	1.4

Transport

Pipeline	Available capacity (MM tons/yr)	Total Investment (bil US\$)
Permian	20	\$1

- Build 500-Mile Houston -to- Permian
 Pipeline
- Refinery Catalytic Cracker are included to expand annual capture of CO₂
- Projected pipeline from Houston to the Permian Basin will help with the economic feasibility of both carbon capture and pipeline projects



Phase III: At-Scale (2050)

Storage

Location	Available storage (bil tons)	Total Investment (bil US\$/yr)
Permian EOR	4.8	TDD
Permian saline	1000	TBD

- Large-scale of EOR and saline storage available in the Permian Basin
- Storage capacity in the Permian will permit to achieve net-zero in carbon goal

Key Take-aways

Phase I (present to 2030):

- Focus on low cost strategic CO₂ Houston emissions: 5.7million tons/yr from Hydrogen SMR
 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton

Phase II (2040):

- Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant
 13.5 million tons/yr from Industrial Processes Refining and Pet Chem
- Build pipelines to the East/Central Texas: 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
- East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline

Phase III (2050):

- Expand capture to include: 11.4 million tons/yr from Industrial Furnaces
 7.8 million tons/yr from Refinery Catalytic Cracker
- Build pipeline to the Permian: 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
- Permian available geologic storage: 4.8 billion tons of EOR and 1 trillion tons of saline

