US Department of Energy CCUS Program Overview

Mark Ackiewicz Director, Division of CCS Research U.S.-Poland Energy Roundtable Washington, DC April 24, 2013

IND. DA

Fossil Energy: Helping Achieve DOE's Mission

DOE Carbon Capture, Utilization, and Storage (CCUS) Program

Demonstration and Commercialization of CCUS

Enhanced Oil Recovery: Driver for CCUS Deployment

Domestic Oil Supplies and CO₂ Demand (Storage) Volumes from "Next Generation" CO₂-EOR Technology**

*At an oil price of \$85/B, a CO₂ market price of \$40/mt and a 20% ROR, before tax.

**Includes 2,300 million metric tons of CO₂ provided from natural sources and 2.6 billion barrels already produced or being developed with miscible CO₂-EOR.

Source: Advanced Resources Int'l (2011).

¹ Source : NETL Report, "Improving Domestic Energy Security and Lowering CO_2 Emissions with "Next Generation" CO_2 EOR," June 2011.

CCUS Program Goals

- < 35% increase in COE with CCUS at 90% capture (post-& oxy-comb.); <10% for precombustion (market-based ~\$40/tonne CO₂ captured)
- > 99% storage permanence of CO₂
- +/- 30% storage capacity accuracy
- 4-5 CCUS demo projects in operation

Address cost and energy penalty of capture

Assess capacity Ensure safety and permanence

Scale-up and deployment

DOE CCUS Demonstration Projects

Focus – Large-scale commercial demonstration of CCUS integrated with coal power generation and fossil fuel industries.

CCUS Demonstration Projects

Program	Project	Recipient	CO₂ Capture Technology	Sequestration	CO ₂ Used/Stored (MMTPY)	Estimated Project in- Service Date
CCPI-2	Kemper	SCS	Selexol®	EOR	3.0	2014
CCPI-3	WA Parish	NRG Energy	Fluor Econamine FG Plus SM	EOR	1.4	2015
CCPI-3	TCEP	Summit	Rectisol®	EOR	2.4	2016
CCPI-3	HECA	HECA	TBD	EOR	2.6	2018
ICCS	SMR H ₂ Production	APCI	VSA	EOR	1.0	2013
ICCS	Fermentation CO ₂	ADM	Dehydration	Saline	1.0	2013
ICCS	Methanol from Petcoke Gasification	Leucadia Energy, LLC	Rectisol®	EOR	4.0	2016
FutureGen	FutureGen 2.0	Ameren, FGA	Oxycombustion w/ CO ₂ purification	Saline	1.0	2017

Those in red font currently under construction

Infrastructure: RCSP* Phase III Large-Scale Core Sampling Taken Geologic Tests

Note: Some locations presented on map may

differ from final injection location

✓ Large Volume Tests in Saline and EOR Fields

- \checkmark Accounting for Stored CO₂
- Three projects currently injecting CO_2
- ✓ Three more expected in 2013

✓ Remaining injections scheduled 2014-2015

	Partnership	Geologic Province	Type/Target Injection (MT)	
1	Big Sky	Nugget Sandstone	Saline/EOR/ 1.0	
2	MGSC	Illinois Basin- Mt. Simon Sandstone	Saline/1.0	
3	MRCSP	Michigan Basin- Niagaran Reef	EOR/1.0	
4	PCOR	Powder River Basin- Muddy Formation	EOR/1.5	
5		Horn River Basin-Carbonates	Saline/2.0	
6	SECARB	Gulf Coast-Cranfield- Tuscaloosa Formation	Saline/EOR/4.0	
7	JECARB	Gulf Coast- Citronelle Paluxy Formation	Saline/EOR/.45	
8	SWP	Regional CCUS Opportunity	EOR/1.0	

7 RCSPs established by the USDOE in 2003. They form a national network of more than 400 organizations covering 43 states and four Canadian provinces.

National Carbon Capture Center (NCCC) at the Power Systems Development Facility (PSDF)

Goals

Plant Gaston

- Offers flexible testing facility with access to real flue and fuel gas (Post and Pre)
- Serves as technology development facilitator offering facilities for scale-up

Bench Scale Units

 Leveraging ability to test other technologies not in the FE R&D portfolio

Pre-Combustion

880 MWe 12,000 tpd CO₂ 560 1 MWe 60 tpd CO₂ 3 MWe 60 tpd CO₂ 0.5 MWe 10 tpd CO₂ 10

Post-Combustion

< 0.1 MWe

< 2 tpd CO₂

Core R&D: Capture Program

Pre-Combustion Capture

Core R&D: Carbon Storage Program

Monitoring, Verification, and Accounting

- Atmospheric and Remote Sensing Technologies
- Near surface monitoring of soils and vadose zone
- Subsurface monitoring in and near injection zone
- Intelligent monitoring systems
 for field management

CO₂ Utilization

- Enhanced Oil Recovery
- Conversion to commodities such as chemicals and plastics
- Non-geologic storage in cement and minerals
- Beneficial use of produced waters

Geologic Storage

- Wellbore construction and materials technologies
- Mitigation technologies for wells and natural pathways
- Managing fluid flow, reservoir pressure, and brines
- Geochemical effects of CO₂ injection
- Geomechanical effects on reservoirs and seals

Simulation and Risk Assessment

- Thermal and hydrologic fate and transport
- Geochemical and geomechanical simulations
- Predicting biologic impacts on storage formations
- Risk assessment and quantification

CCS Best Practices Manuals

Critical Requirement For Significant Wide Scale Deployment -Capturing Lessons Learned

the ENERGY lab BEST PRACTICES for: Monitoring, Verification, and Accounting	Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)
of CO ₂ Stored in Deep Geologic Formations	Monitoring, Verification and Accounting	2009/ 2012	2016	2020
	Public Outreach and Education	2009	2016	2020
	Site Characterization	2010	2016	2020
BEST PRACTICES for: Public Outreach and Education for	Geologic Storage Formation Classification	2010	2016	2020
Carbon Storage Projects	**Simulation and Risk Assessment	2010	2016	2020
	**Carbon Storage Systems and Well Management Activities	2011	2016	2020
First Edition	Terrestrial			Post MVA ase III

ENERGY

NATIONAL ENERGY TECHNOLOGY LABORATORY

**Regulatory Issues will be addressed within various Manuals http://www.netl.doe.gov/technologies/carbon_seq/refshelf/refshelf.html

Knowledge Sharing Products

North American Carbon Atlas and NATCARB

Oil and Gas Fields 226 billion MT CO₂ Storage Resource

ARRA Regional Technology Training

Worldwide CCS Project Database

RCSPs Working Groups

- Geological and Infrastructure
- Monitoring, Verification, Accounting
- Simulation and Risk Assessment
- Capture and Transportation
- GIS and Database
- Water
- Public Outreach and Education

Questions?

Thank You!

For more info: Mark Ackiewicz mark.ackiewicz@hq.doe.gov www.fossil.energy.gov

