

Deploying our way to a Clean Energy Future

U.S. energy consumption by source and sector, 2021

quadrillion British thermal units (Btu)

2021 Global Supply Chain Flows

Innovation and Infrastructure

HIGH-PAYING, GOOD QUALITY JOBS THAT DON'T REQUIRE COLLEGE DEGREES

SAFER HOMES FOR KIDS + FAMILIES

LOWER MONTHLY ENERGY BILLS

MAKING CLEAN ENERGY CONSUMER CHOICES MORE ACCESSIBLE + AFFORDABLE

LESS RELIANCE ON FOREIGN MANUFACTURERS A MORE RESILIENT SUPPLY CHAIN FOR CONSUMERS

SUPPORT FOR STATE, LOCAL, + TRIBAL GOVERNMENTS TO MAKE COMMONSENSE, LOCALIZED INVESTMENTS FOR THEIR COMMUNITIES **\$7.5 billion** Building a national EV charging network so every community can access zero- + low-carbon transportation options

\$3 billion Supporting weatherization + energy efficient upgrades for American homes + businesses

\$2.8 billion Bringing battery production home to America, creating more than 8,000 U.S. jobs

\$425 million Helping states implement clean energy projects

\$250 million Funding state loan programs for energy efficient upgrades in residential + commercial buildings

Learn more at www.energy.gov/BIL

AND MUCH MUCH MORE...

Goals for Funding Opportunities

Justice40 Disadvantaged Communities

Where are the disadvantaged communities (DAC)?

- Community can be either:
 - people in geographic proximity or
 - people experiencing a common condition.
- Disadvantage was measured based on a score across 36 indicators.
- Census tracts with at least 30% lowincome households and disadvantage scores higher than 80 percent of those in their state are DACs.

40209 Energy Communities

PROCUREMENT SENSITIVE – DOE INTERNAL DOCUMENT

Clean Energy Infrastructure Stakeholders

Communities

States and Tribes

Utilities

Non-profits

Universities

K-12 Schools

Infrastructure Projects Create Jobs and Local Benefits

Who is the Clean Energy Workforce?

Training

4-year or advanced degree, professional license

Technical degree, Apprenticeship, Certification

MESC's Place in the DOE Ecosystem

DOE Innovation, Demonstration, Manufacturing Landscape

Basic Research	Applied Research and Development	Large-Scale Demonstration	Manufacturing
Basic Energy Sciences (BES) Fundamental research	Applied Research Programs (EERE, FECM,) Applied Research and Development Advanced Manufacturing Office (AMO) Innovative manufacturing	Office of Clean Energy Demonstrations (OCED) Large-scale clean energy demonstration projects accelerate market adoption and deployment of technologies	Loan Program Office (LPO) Debt financing for the commercial deployment of large-scale energy projects to support U.S. manufacturing
Advanced Project "Off-roadmap	technology RD&D :s Research Agency–Energy (ARPA-E) " Transformational R&D	Office of Manufacturing and Energy Supply Chains (MESC) Support Scale-Up and Deployment of manufacturing infrastructure critical to the Nation's energy supply chains	

Responsible for strengthening and securing manufacturing and energy supply chains needed to modernize the nation's energy infrastructure and support a clean and equitable energy transition.

Manufacturing and Energy Supply Chain

Cross-Office Functions:

- Strategy
 - $\circ\,$ Lead intra-DOE coordination
- Set multi-year program plans with other offices
- Portfolio Management
 - Assess project/portfolio risk
 - $\,\circ\,$ Support portfolio decision-making
 - Project Selection and Execution
- Expert Team to support Strategy and Portfolio Management, Awards,
- Technology experts
- Market / technoeconomic
- \circ Financial

MESC Distinctives

Mission: Strengthen and secure domestic clean energy and manufacturing supply chains

Objectives: Catalyze resilient and sustainable energy sector industrial base (ESIB)

- Scale-Up and Deployment of new manufacturing infrastructure to fill critical ESIB gaps
- Support Manufacturing Facility Upgrades to achieve ESIB decarbonization Goals
- Bolster small and medium manufacturing enterprises and support communities in energy transition.
- Develop domestic manufacturing clean energy workforce capabilities and resources

MESC Distinctives

Mission: Strengthen and secure domestic clean energy and manufacturing supply chains

(1) Install Critical Supply Chain Manufacturing Capacity

(2) Reduce Industrial Base Carbon Emissions

(3) Increase Clean Energy Jobs

~\$6B – battery supply chains ~\$6B – industrial decarbonization ~\$10B – ITC (48c)

Director: David Howell (acting)

Principal Deputy Director: David Howell Chief of Staff: Zack Valdez

MESC-10 Facility and Workforce Assistance

Structure

Address regional manufacturing and supply chain challenges

- Upgrade existing
 manufacturing facilities
- Emphasis on opportunities for small and medium enterprises and communities in energy transition.
- Train the next generation of energy engineers

Funding

- 1. FY23 IACs
- 2. BIL 40523 IAC Expansions
- 3. BIL 40521 IAC Impl. grants
- 4. BIL 40209 Manufacturer/Industrial/ Recycling Grants in Distressed Communitie
- 5. BIL 40534 State Manufacturing Leadership
- 6. IRA 50161 Advanced Industrial Facilities Deployment

Stakeholders

- Broad Group of Industrial Enterprises
 - Regional Manufacturers
 - Small and Medium
 Manufacturing
 Enterprises
- Academia: Universities, Community Colleges, Technical Schools
- State/Local Governments

Industrial Assessment Centers (IAC) Program

For more than four decades, the federal government has worked with four-year IHEs through the IAC Program to:

- Provide technical assistance to smalland medium-sized manufacturing firms in areas including energy efficiency, smart manufacturing, cybersecurity, and more
- Train the next generation of energysavvy engineers

Director: David Howell (acting)

Principal Deputy Director: David Howell Chief of Staff: Zack Valdez

MESC-20 Battery and Critical Materials

Structure

Scale-Up & Deployment of new manufacturing capacity

- Critical minerals and materials, and key material components
- Establish critical critical materials recycling and re-use ecosystem
- CM Focus Areas
 - Battery materials
 - Rare Earths, PGMs, + Other Critical Materials

Funding

- 1. 40207 Battery Material Processing
- 2. 40207 Battery Manf.
- 3. 40207(f3) Battery Recycling: State/Local Programs
- 4. 40207(f4) Battery & Crit. Mineral Recycling: Retailer Collection
- 5. BIL 40205 Rare Earth Demo

Stakeholders

- Upstream and Mid-Stream Mineral Processing, Refining, and Materials Production Enterprises
- Recycling Enterprises
- Upstream and Mid-Stream Innovation, Demonstration and Scale-Up Stakeholders
- Private Sector, Federal Agencies, International Partners, State/Local

Background: Battery Supply Chain and BIL, IRA, DPA

BIL FOA 2678

Sec. 40207(b) Battery Material Processing Grants

- Total \$3 Billion Federal over 5 years
- 2022 FOA: \$1.5 Billion Federal (matched by Applicant)

Sec. 40207(c) Battery Manufacturing and Recycling Grants

- Total \$3 Billion Federal over 5 years
- 2022 FOA: \$1.6 Billion Federal (matched by Applicant)

Director: David Howell (acting)

Principal Deputy Director: David Howell Chief of Staff: Zack Valdez

MESC-30 Energy Sector Industrial Base

Structure

Scale-Up & Deployment of new manufacturing capacity

- Critical components, devices, systems
- Establish world-class Energy Sector Industrial Base mapping, modeling, and analysis tools.
- ESIB Focus Areas
 - Grid/HV/Storage
 - Solar/Wind
 - Fuel Cells/Electrolysis
 - Semiconductors

Funding

- FY23 Technical Assistance Modeling. Mapping, and Analysis
- 2. BIL 4055 Rebate Program
- 3. IRA 50143 Manufacturing Conversion Grants (+OCED)
- 4. DPA (IRA).
- 5. 48c + 45x Tax Credits

Stakeholders

- Mid-Stream and Down-Stream Components, Device, and Systems Manufacturing Enterprises
- Supply Chain Planning and Forecasting Stakeholders
- Private Sector,
 International Partners

ESIB: Supply Chain Modeling and Analysis

Provide a comprehensive and upgradeable framework for modeling and analysis

- Current modeling and analysis is disparate and focused on individual needs in programmatic areas
 - Typically sponsored by technology offices in individual areas
 - Often emphasizes R&D instead of manufacturing supply chain and strategic investments
- Key supporting work to set priorities and direction
 - Supporting models, data, and analysis for energy related minerals, materials, and

Example Modeling Framework: SMART Mobility

Critical Minerals for Electric Vehicles and Clean Energy Technologies

IEA. All Rights Reserved
 Copper

 Lithium
 Nickel
 Manganese
 Cobalt
 Graphite
 Zinc
 Rare earths
 Others

 Rare earths
 Others

 IEA. All Rights Reserved
 IEA. All Rights Reserved
 IEA. All Rights Reserved
 IEA. All Rights Reserved

American-Made Batteries

U.S. Battery Manufacturing Since President Biden Took Office

79 battery manufacturing facilities (*7 announced but not pictured)

\$93 billion total investment... and counting

Recycling & Upcycling
Materials Separation & Processing
Component Manufacturing
Private Sector Investments

Zack.Valdez@hq.doe.gov