

Smart Grid Demonstrations show energy efficiency potential

Marek Samotyj
Power Delivery & Utilization Sector
Electric Power Research Institute (EPRI) – Palo Alto, California, USA

Electric Power Research Institute

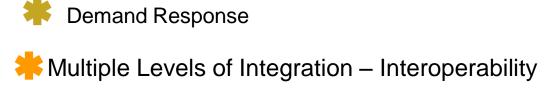
Collaboration.....Technical Expertise....Thought Leader

- Not for profit, collaborative electricity research organization with more than 450 participants in over 40 countries
- International funding accounts for nearly 20% of total program
- U.S. utilities placed approximately 80% of their R&D investment with EPRI in 2012.
- Independent electricity research in:
 - Generation
 - Environment
 - Power Delivery & Energy Utilization
 - Nuclear
- 1600+ R&D projects annually, ~\$380M R&D funding and 10 to 1 average funding leverage

EPRI Smart Grid Demonstrations

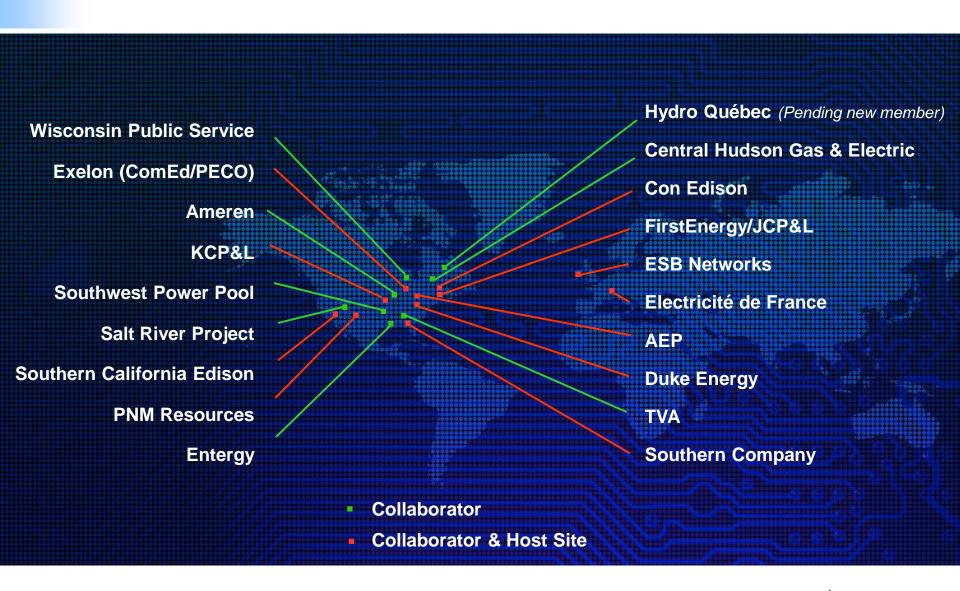
 Deploying the Virtual Power Plant

 Demonstrate Integration and Interoperability


 Leverage information and Communication Technologies

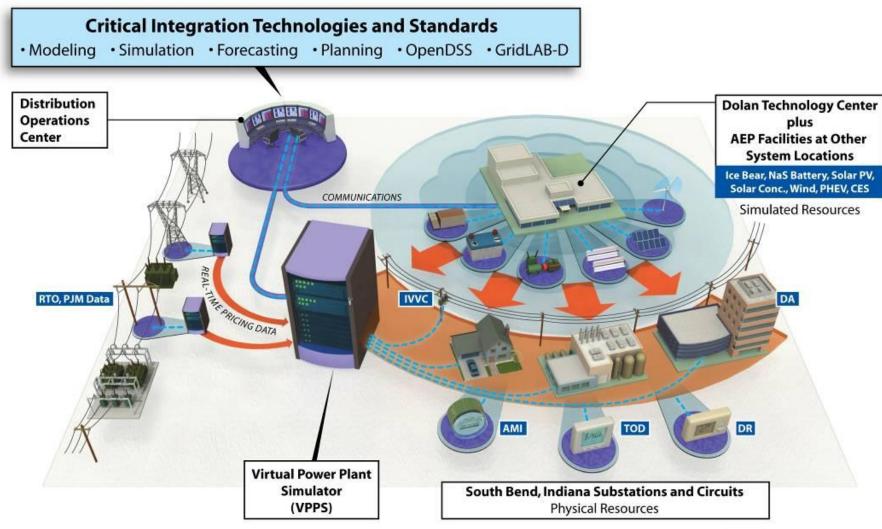
Integration of Multiple
 Types of Distributed
 Energy Resources (DER):

Distributed Generation


Renewable Generation

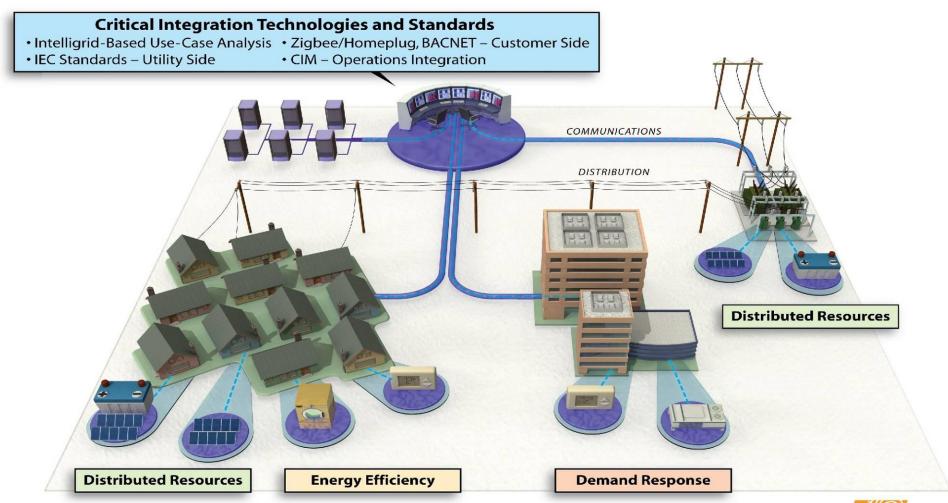
Storage

© 2009 Electric Power Research Institute, Inc. All lights


Smart Grid Demonstration - 18 Collaborators

American Electric Power Demonstration Project

"Virtual Power Plant Simulator"



PNM

High-Penetration PV thru Grid Automation and Demand Response

A Case Study on

Volt-VAR Control Integrated with Wind Turbine Inverter Control

A constant voltage mode of operation can be delivered through variation of VAR output, independent of MW generation.


The reactive power capabilities of modern wind turbines can be used for a range of objectives, such as loss reduction, local voltage control and reactive power export.

A Case Study on Smart Green Circuits

An arc suppression coil protection system has helped reduce costs; fault finding time has been reduced from 9 hours to 1.5 hours, and measured continuity of performance improved by 100%.

A "self-healing" circuit has operated successfully in over 12 separate incidents, with faulted sections isolated and supply recovered to remaining customers within seconds.

Demonstration Cross Collaboration Opportunities Based on Highest Priority Smart Grid Issues

	Smart Grid Demonstration Members																				
	Primary Integrated Technologies & Applications		Host Site Colloborators												Collaborators						
			Con Ed	Duke	EDF	ESB	Exelon	FE	KCP&L	PNM	SCE	Southern	Ameron	CHG&E	Entergy	SPP	SRP	TVA	WPS		
Distributed Energy Resources	Demand Response Technologies																				
	Electric Vehicles																				
	Thermal Energy Storage																				
	Electric Storage <= 100 kWh (Utility Local Storage, Customer Storage,)																				
	Electric Storage > 100 kWh (Typically at substations or near renewables .)																				
	Solar Photovoltaic																				
	Wind Generation																				
	Conservation Voltage Reduction (volt/var management and related)																				
	Distributed Generation (Microturbin, Fuel Cell, Diesel Generator, Biogas,)													Cross Collaboration Opportunities							
Communications and Standards	Customer Domain (SEP, BACnet, HomePlug, WiFi, etc.)														Areas of Interest						
	Transmission & Distribution (IEC 61850, 60870, DNP3, IEEE 1547)													Similo							
	Operations Domain (IEC 61968/61970, MultiSpeak, OpenADR,)																				
	Cyber Security (Authentication, Certificates, Encryption, Intrusion Detection,)																				
	AMI or AMR																				
	RF Mesh or Tower																				
	Public or Private Internet																				
	Cellular Based (1xRTT, GPRS, EVDO, CDMA, 3G, LTE, 4G,)																				
	WiMAX (IEEE 802.16) Communications																				
Programs	Price Based (RTP, DA, CPP, PTR, TOU, Block,)																				
	Incentive Based (DR, DLC, Ancillary Services, Interruptible, Bidding,)																				
990	Integration with System Operations (RT Visibility of DER, DMS Integration)																				
Ops & Planning	Integration with System Planning (Visibility of DER in planning,)																				
	Modeling and/or Simulation Tools																				

Together...Shaping the Future of Electricity