

Best Practices for LCA of DACS

USEA Webinar Presented by Greg Cooney July 28, 2022

Purpose and Motivation

- CDR is necessary to limit warming
- LCA is well-suited to evaluate CDR
- ISO standards exist (14040/14044), but lack specificity
- Audiences: developers, federal funding awardees, policymakers and regulators, entities interested in evaluating CDR procurement, and potential host communities
- Not exclusive to current leading solvent and sorbent tech

DOE FECM Best Practice Document – Goals

- Foster consistency of LCA of DACS systems to enable more complete understanding of potential impacts of CDR
- 2. Assess **sensitivity and uncertainty** in results to provide confidence in the study outcomes and potential risk envelopes for technology performance
- 3. Understand **potential tradeoffs and cobenefits** of DACS systems
- 4. Leverage **best practices** from the LCA research and practitioner community

Document Structure

- Each life cycle stage is broken down into the key decisions per ISO
- Document is not a replacement for ISO 14040/14044
- Within each LCA stages:
 - Background on key decisions
 - Relevance to the application of LCA to DACS
 - Recommended best practices

Adapted from ISO 14040 (2006)

Discussion topics for today

- Clarity and consistency in functional unit definition
- System boundary definition
- LCI data consistency/representativeness
- Negative emissions accounting
- Sensitivity and uncertainty analysis

ENERGY Fossil Energy and Carbon Management

Potential Functional Units

Cradle-to-gate:

- 1. Mass of CO₂ captured
- 2. Mass of CO₂ captured from the atmosphere

Cradle-to-grave:

- 3. Mass of CO₂ captured from the atmosphere and permanently stored
- Mass of net CO₂e captured from the atmosphere and permanently stored

Functional Unit		System Boundary	Calculation (kg CO ₂ e/FU)
1	kg CO ₂ captured	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c+d} = \frac{0.40+0.05-1.00}{1.00+0.50} = -0.37$
2	kg CO ₂ captured from the atmosphere	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c} = \frac{0.40+0.05-1.00}{1.00} = -0.55$
3	kg CO ₂ captured from the atmosphere and permanently stored	Cradle-to-grave	
4	net kg CO ₂ e captured from the atmosphere and permanently stored	Cradle-to-grave	

Functional Unit		System Boundary	Calculation (kg CO ₂ e/FU)
1	kg CO ₂ captured	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c+d} = \frac{0.40+0.05-1.00}{1.00+0.50} = -0.37$
2	kg CO ₂ captured from the atmosphere	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c} = \frac{0.40+0.05-1.00}{1.00} = -0.55$
3	kg CO ₂ captured from the atmosphere and permanently stored	Cradle-to-grave	c = 1 kg CO ₂ e = $\frac{a+b-c+f}{c} = \frac{0.40+0.05-1.00+0.01}{1.00} = -0.54$
4	net kg CO ₂ e captured from the atmosphere and permanently stored	Cradle-to-grave	

Functional Unit System Boundary		System Boundary	Calculation (kg CO ₂ e/FU)	
1	kg CO ₂ captured	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c+d} = \frac{0.40+0.05-1.00}{1.00+0.50} = -0.37$	
2	kg CO ₂ captured from the atmosphere	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c} = \frac{0.40+0.05-1.00}{1.00} = -0.55$	
3	kg CO ₂ captured from the atmosphere and permanently stored	Cradle-to-grave	c = 1 kg CO ₂ e = $\frac{a+b-c+f}{c} = \frac{0.40+0.05-1.00+0.01}{1.00} = -0.54$	
4	net kg CO ₂ e captured from the atmosphere and permanently stored	Cradle-to-grave	Scale up factor c' = $\frac{-1}{FU \ 3 \ Result} = \frac{-1}{-0.54} = 1.85$ kg CO ₂ e = $\frac{c'(a+b+f)-c'}{1} = \frac{0.85-1.85}{1} = -1$	

Functional Unit		System Boundary	Calculation (kg CO ₂ e/FU)
1	kg CO ₂ captured	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c+d} = \frac{0.40+0.05-1.00}{1.00+0.50} = -0.37$
2	kg CO ₂ captured from the atmosphere	Cradle-to-gate	c = 1 kg CO ₂ e = $\frac{a+b-c}{c} = \frac{0.40+0.05-1.00}{1.00} = -0.55$
3	kg CO ₂ captured from the atmosphere and permanently stored	Cradle-to-grave	c = 1 kg CO ₂ e = $\frac{a+b-c+f}{c} = \frac{0.40+0.05-1.00+0.01}{1.00} = -0.54$
4	net kg CO ₂ e captured from the atmosphere and permanently stored	Cradle-to-grave	Scale up factor c' = $\frac{-1}{FU \ 3 \ Result} = \frac{-1}{-0.54} = 1.85$ kg CO ₂ e = $\frac{c'(a+b+f)-c'}{1} = \frac{0.85-1.85}{1} = -1$

ENERGY Fossil Energy and Carbon Management

energy.gov/fe

System Boundary: Cradle-to-grave

Fossil Energy and Carbon Management

energy.gov/fe

System Boundary: Comparison

Fossil Energy and Carbon Management

energy.gov/fe

Functional Unit and System Boundary

FECM Best Practices

- Analyze DACS using this functional unit: Mass of CO₂ captured from the atmosphere and permanently stored
- \checkmark
- Evaluate DACS with a **cradle-to-grave boundary** to fully account for the function of the system
- For all dispositions of the captured CO2, which include utilization/conversion or EOR, the system boundary should encompass the **downstream fate of the captured CO₂** as well as any associated activities
- \checkmark
- Depict the system boundary graphically using a **process flow diagram** to depict processes included within the analysis scope

Life Cycle Inventory: Data Collection

- Facility Operations
- Consumables
 - Utilities heat, electricity
 - Process chemicals
 - Water
- Non-Consumables
 - Capital equipment
 - Site construction
 - Initial process fluids

Life Cycle Inventory: Data Collection

- Facility Operations
- Consumables
 - Utilities heat, electricity
 - Process chemicals
 - Water
- Non-Consumables
 - Capital equipment
 - Site construction
 - Initial process fluids

- \circ Natural gas model
- Saline aquifer storage model
- o U.S. Electricity Baseline

NATIONAL

TECHNOLOGY LABORATORY

> Greenhouse gases, Regulated Emissions and Energy use in Technologies (GREET) model

- U.S. Life Cycle Inventory (USLCI) database
- $\circ~$ Federal agency LCI data submission

 Environmentally-Extended Input-Output (USEEIO) Models

Life Cycle Inventory: Data Collection

FECM Best Practices

- \checkmark
- Define LCA scenarios with a **direct tie to process and cost engineering model (i.e., TEA)** scenarios such that they characterize the underlying facility operating envelope

- Report **physical quantities for process inputs and outputs** (e.g., MJ energy, kg materials) in addition to the associated inventory of emissions (e.g., kg emission)
- ✓
- Utilize a modeling approach that provides the best data that is available to represent these activities corresponding to the **stage of development**

Update representation of design and underlying LCI data as **technology matures** and nears deployment

When multiple potential sources/types are being evaluated as part of the design, **develop separate LCA scenarios** for each

Life Cycle Impact Assessment

FECM Best Practices

Utilize the **EPA's Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI)** version 2.1 method for LCIA to characterize the following impact categories (additional impact methods and impact categories may also be reported): ozone depletion, acidification, eutrophication, smog formation, human health particulate, human health cancer, human health noncancer, ecotoxicity

Utilize the **IPCC AR6 GWP characterization factors** for translation of GHG emissions to Global Warming Potential impacts as a replacement for the factors in TRACI (IPCC, 2021), and adopt future IPCC GWP characterization factors as they are released.

In LCA, negative emissions can arise from one of two situations:

- **1. Removal** of the emission species from an environmental compartment
- **2. Avoided** emissions associated with the production of a product by another means

CARBON NEGATIVE

CARBON REDUCING

Scena	ario	Functional Unit	Calculation (kg CO ₂ e/FU)
1	No Co-Products	kg atmospheric CO ₂ captured and stored	c = 1; g = 0 kg CO ₂ e = $\frac{a+b-c+f}{c} = \frac{0.40+0.05-1.00+0.01}{1.00} = -0.54$
2	Co-Product Accounting: Combined avoided and atmospheric removals	kg atmospheric CO ₂ captured and stored	c = 1; g = 0.20 kg CO ₂ e = $\frac{a+b-c+f-g}{c} = \frac{0.40+0.05-1.00+0.01-0.20}{1.00} = -0.74$
3	Co-Product Accounting: Separate avoided and atmospheric removals	kg atmospheric CO ₂ captured and stored	c = 1; g = 0.20 removed kg CO ₂ e = $\frac{a+b-c+f}{c} = -0.54$ avoided kg CO ₂ e = $\frac{-g}{c} = -0.20$

FECM Best Practices

For systems with co-products, when system expansion is used to manage multiple outputs, report **avoided emissions and atmospheric removals separately** in the results

When a DAC facility includes capture of CO_2 from on-site fossil fuel combustion or other non-atmospheric CO_2 , **separately report that amount** from the atmospheric CO_2 captured

Interpretation: Sensitivity and Uncertainty

- LCA is a data-intensive framework
- Requires decisions from the analyst about the representation of the system under study affect results
- Uncertainty and variability in these decisions manifest from a variety of sources

LCI Data Category	Parameters for Analysis
DAC Operation	Technical operating performance (TEA case alignment)
	Co-product management method and displacement value (if applicable)
Consumables – Electricity	Electricity source
Consumables – Heat	Heat source
Consumables – Natural Gas	Natural gas supply chain – methane intensity
Consumables –	Key process material inputs (e.g.,
Process chemicals and water	solvent makeup, other supporting chemicals)
Non- Consumables	Capital equipment
	Process chemicals/catalysts

Interpretation: Sensitivity and Uncertainty

FECM Best Practices

Use of **bounding** analysis to inform key decision points

Use of standard modeling **scenarios** (defined in table)

Use of **sensitivity analysis** to understand the dependence of key parameters

Thank You

We would like to thank the following reviewers for their feedback on a draft version of the Best Practices:

- Emily Grubert Deputy Assistant Secretary, U.S. Department of Energy Office of Carbon Management
- Uisung Lee and Michael Wang Argonne National Laboratory
- Vincent Camobreco and Aaron Sobel U.S. Environmental Protection Agency
- Derrick Carlson and Matt Jamieson National Energy Technology Laboratory
- Dwarakanath Ravikumar and Eric C. D. Tan National Renewable Energy Laboratory

Fossil Energy and Carbon Management

Thank You

gregory.cooney@hq.doe.gov https://www.energy.gov/fecm/best-practices-LCA-DACS

