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Outline

e CO, in the subsurface — Meeting the
challenges of GCS in a Class VI regulatory
environment

* New Monitoring Strategies

e U-tube fluid sampling
e Continuous Active Source Seismic
Monitoring (CASSM)
 Heat-pulse fiber-optic monitoring
* Integrated Deployment (MBM)
e Future Research Frontiers

Lawrence Berkeley National Laboratory



The Challenge of CO, Sequestration — a new problem with new requirements

Class VI well requirements prescribe detailed information needs.
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Regulatory Drivers for Subsurface Monitoring

* CO, storage projects governed by rule 40 CFR § 144- § 146

e Guiding principle — prevent the movement of contaminants into
USDW

e (Some) requirements for Class VI wells

— AOR delineation including existing wells and pertinent surficial
features (model and assumptions)

— Geologic structure and hydrogeological properties including
reservoir and overlying formations, location of USDWs

— Seismic history and determination that seismicity would not
interfere with containment

— Baseline geochemical data including from USDWs in area

e Operator must demonstrate sufficient capacity for planned storage

volume and confining zone free of flaws that would compromise
storage
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First Comprehensively
Monitored Field Study — The
Frio Brine Pilot, 2004

Injection interval: 24-m-thick,
mineralogically complex
Oligocene reworked fluvial
sandstone, porosity 30%,
Permeability 2.3 Darcys

6m perforated zone

Seals — numerous thick shales,
small fault block

Injection
Depth 4,900 ft (1,500 m) interval
Brine-rock system, no
hydrocarbons

150 bar, 53 °C, supercritical CO, Oil production



M N

New Technology: U-Tube —— samve L
Fluid Sampling
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« Down-hole check valve permits |
. . . f T Ball Check Valve
fluid entry into a loop of stainless L
steel tube tfﬂ
 Fluid driven to surface with 3

compressed ultra-pure N,

Sliding End Packer

The “U”

Check Valve
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Frio U-tube: real-time analysis 7.
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U-tube Deployment History

Location Installation Number Depth Temp Comments/Formation

Date of U- (m) (°C)

tubes

Frio Brine Pilot, Dayton TX, September, 1 1500 61 C-sand Test
USA 2004
Yucca Mountain, Amargosa March, 4 262, 30 Volcanic tuff
Valley, NV, USA 2006 350
Frio Brine Pilot, Dayton TX, September, 2 1550 62 Blue-sand test
USA 2006
High Lake Project, Nunuvut  July, 2007 1 400 2 Sub-permafrost
Territory, Canada sampling
Otway Project - Stage |, October, 3 2040 96 Waarre-C Depleted
Victoria, Australia 2007 Gas Test
Greenland Analogue July, 2009 1 240 1 Sub-permafrost
Project, Kangerluusuaq, sampling
Greenland
SECARB Cranfield, Cranfield, November, 2 3100 127 Tuscaloosa D
MS, USA 2009 Sandstone
Otway Project - Stage 2b, February, 2 1440 56 Paarratte Formation -
Victoria, Australia 2011 Residual Gas Test
Citronelle Dome, Citronelle, March, 1 3000 106 Paluxy Formation
AL, USA 2012
Hontomin Project, December 1 1500 60 Sinemuriense
Hontomin, Spain 2013 Dolomites
MUSTANG Project, Heletz, February 2 1600 62 Heletz Sandstone
Israel 2014
Planned projects using U-tubes (well drilling in 2014):
Big Sky Regional Carbon Sequestration Partnership/ Kevin Dome,
Montana, USA
Kansas Wellington Field - Arbuckle Small Scale Injection

%%NE!D.W Lawrence Berkeley National Laboratory




Otway Basin—Depleted Gas
Field

 Produce Buttress-1
80% CO, 20% CH,

« Compress and
transport 2 km

* Inject CRC-1

~1.6kg/s (Injection

started April 1,
2008)

* Monitoring: surface
seismic, 3D VSP
CRC-1, Naylor-1, soil
gas, shallow
groundwater and
atmosphere

CO,+
methane

© CO2CRC

Massacre_Shale]
{7imboon, Sandstone

o Paaralte| Formation

Belfast:Mudstone,

e
Gas Field = TraveliTime
HPE I |— : i

Eumeralla Formation

ESDO08-007



b Injection 1 Monitoring
Well '

Key Monitoring Objectives
« Identify arrival of CO,
 Location of CO,

 Monitor GWC movement

e Arrival of tracers

eleloleolololole

Geophone with clamp

3c Geophone with clamp
Hydrophone

Pressure/Temp and
U-tube Inlet
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Otway U-tube CO, Data
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Further innovations: tube-in-tube U-
tube - S|mpI|fy RIH
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CASSM monitoring — continuous active source seismic
monitoring
Motivation: large decrease in seismic velocity for CO,
ha(;:ltlion (s ] 20 4I?DiStaBI(che (ng) 100 O\lzfst.‘jlivation
49401 e Modeled CO, plume
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CO, Plume
Crosshole seismic tomography at Frio Brine Pilot
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Time (ma)

Continuous Active Source Seismic Monitoring

(CASSM)

« Goal: Precision In Situ monitoring of Crosswell
seismic properties via crosswell Configuration
geometry 1

« CASSM Applications:

— Earthquake ‘forecasting’ Fixed
. Receiver
 Measure tectonic stress change Array
* Need calibration signal: Fixed
— Barometric pressure Seismic
Source

— Monitoring of In Situ Processes

» CO, sequestration - plume dynamics and .
petrophysms
* Monitoring for groundwater remediation /
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Background

Lab studies demonstrate stress sensitivity
— Stress sensitivity of velocity ~10~ to 10° /Pa

Attempts at field scale measurement date back decades (e.g.
Reasenberg and Aki, JGR 1974), with recent work using 4D
surface seismic

Crosswell geometry improves repeatability and frequency
content (no near surface variations) and gives in situ result

Continuous monitoring significantly reduces error due to
positioning and allows better understanding of time-varying
processes (as opposed to time-lapse ‘snapshots’)



Piezo source, offset=12 m, every 30 min for 1 year.

2002: Observation of Barometric Pressure
(Earthquake Res. Inst., Univ. Tokyo)

Velocity-stress sensitivity 5 x 10-7
(Yamamura et al., JGR, 2003; Sano, et al, 1997)
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Measured Delay Time Repeatability: < 10°s N

2006 | 2010
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SAFOD: Histogram of the measured delay time between two consecutive 45-minute
records for two channels. 2006 data from Niu, et al, 2008, Nature (supplemental material)
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CASSM for CO, Monitoring N

 Motivation

— Apply techniques developed for stress monitoring to reservoir
monitoring of CO, injection and storage

« US DOE CO, InjectionTests: Frio-ll (Texas) and SECARB
(Mississippl)
— Frio-1l: Monitor evolution of CO, plume (Daley, et al, 2008
Geophysics)
— SECARB: Extend technique to 3 km, 120 °C, multiple sources and
Sensors



2006 Frio-Il CASSM: Design for 1500 m depth f\\ i
Multiple Sensors Give Spatial Variation:

: 3 Injection Well Observation Well
it 3
; W 30 m
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‘Piezotube’ S q Source @ Packer
I€z0tube  Source an Sensor @ Perforations B

Hydrophone sensor mounted on

tubin Piezotube: Patent Applied
g lezotube: Patent Applie Daley, et al, Geophysics, 2007.




Frio-Il CASSM Data (~3 Days)

‘Control’ Raypath in Seal
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Frio-1l CASSM Results

Begin Co, End

1.2 Iniei:tion Breakt:hrouq__h Iniei:tion Injection Well Observation Well
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Frio-1l: Change in Reservoir/Plume Model \’m
with CASSM Constraints
a 0.5
- . 0.4
140 -« Initial model t
- .« Well Logs and Core £ 03
1660 300 a 0.2
1870 T 0.1
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X (m) S tCOtZ_
[b] aturation
@ 0.5
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o ™ CASSM Constrained %
1BE0 : e 8 0.2
0.1
0

jlaz-N) %0

0 20 40
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CO, plume is affected by buoyancy more than predicted, and is thinner and longer,
than original estimate, with ‘step’ between wells.

Daley, et al, 2011, IIGGC
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Cranfield CASSM: Calibrating Seismic Pressure coceod) ‘.3‘
Response with Well Pump Test

Lower Source Channel 5 Stack 2 traces

1.0€-03 6200 Change in seismic
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monitoring subsurface pressure with e FYE NN g e e o |
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Days after Nov. 13th, 2009

T. Daley, J. Ajo-Franklin, V. Leung, LBNL
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Fiber-Optic heat-pulse monitoring %

BERKELEY LAB

Location of the proposed monitored geologic reposilory at Yucca Mountain, Nevada

Phase | Wells [l Phase Il Wells . Phase Il Wells @ Phase IV Wells ¢ Phase V Wells

In 2006 unexpected observations of rapid groundwater flow using FEC
logging south of Yucca Mountain required an alternate path of
investigation to confirm or refute initial results



Fiber-Optic Heat-Pulse
Monitoring

Fiber-optic DTS

P
.

Heat-pulse measurement:

oA distributed fiber-optic temperature sensor
and a continuous heater were installed in
24PB

*A sand/bentonite backfill was used to
eliminate intraborehole flow

sTemperatures were logged to acquire:
—Baseline conditions
—Heating/cooling profiles




100 150 200 250 300 350
Depth (mbgs)

*Distributed Thermal Perturbation Sensor data
acquired while heating at 20 W/m

*The coolest temperature profile is the baseline
thermal condition. Note the absence of a
geothermal profile between 125 mbgs—230
mbgs

*The large thermal perturbation (230 mbgs)
corresponds with the same high flux interval
determined during FEC logging

DT (degC)

Estimation of Fluid Flux using Heat-Pulse Observations

1.00 | 0.4
VW\ — Temp
0.75 | — Flux 0.3
0.50 - - 0.2
0.25 - + 0.1
0.00 - 0
100 150 200 250

Depth (mbgs)

The fluid flux distribution along the
length of 24PB is shown. The heat-
pulse high flux zones corroborate the
FEC logging results

Flux (L/min-m?)



2"d Heat-pulse example: High Lake Mineral
Exploration Site, Nunavut Terr., Canada

P E

*Use the DTS to obtain
a baseline temperature _ :
profile fp o e i e Tt N

«Given the .‘ | | ‘ ‘::_.‘_’:"-‘_‘w\g%l.akeVo.-lcanog:emcSulhdeDéposit | N

heterogeneous thermal B o= R N

conductivity profile, use BE S %* ' ‘ |

heat-pulse to estimate
thermal conductivity

* Determine
paleoclimate through
ground surface
temperature history
reconstruction



High Lake heat-pulse installation

 Multifunctional completion for
geochemical sampling and physical
property measurement in 75 mm borehole

* Polyethylene sheathed multimode fiber-
optic cable and heating cable lowered to
near the base of the permafrost

* Downhole pressure/temperature sensor
to provide a calibration reference

» U-tube below packer



Estimate K

DT (°C)

3.5

therm

radial conduction

using In situ data — assume

Depth
¢+ 50m

—50 m Model
= 100 m
— 100 m Model

x 166 m
— 166 m Model
200 m

3.42 W/mK
'q:4.78 W/mK
1.0 T T
250000 300000 350000 400000

Time (sec)



Estimate K., USINg In situ data — assume
radial conduction

8.0 Thermal conductivity correlates
with lithology
7.0
+<— 5%-50% Sulphides, pyrite dominant
6.0

(Host rock- altered Lapilli Tuff)

o1
o
—
—_—

| v{\“v P,
3.0 \I\/
2.0 P \\ ™~ Dacite-rhyodacite Flow
10 Dacite, rhyodacite Lapilli Tuff
0 100 200 300 400 500

Depth (m)
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Ground Surface Temperature History

0.0 ’,

-1.0 A

-2.0

-4.0 -
-5.0 A
-6.0 - l
4
7’
-70 // 1 1 T —

0o - 100 200 300 400
‘ Depth (m)

GSTH Predictions:

Geothermal heat flux estimate 67+1
mMW/mK

*GST has increased 3.0 = 0.8°C over
the long term average

Freifeld, B. M.

Using ITOUGH2 code invert baseline
+  temperature profile.

Use vertical 1-D model with heat conduction
and estimated Kt values

Model parameters

-Geothermal Heat Flux

-Ground surface temperatures
-6.0 -
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et al., Geophys. Res. Lett. 35, L14309, (2008)
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Heat-Pulse for CO, sequestration 77 :

BERKELEY LAB

Ktherm = f(COZS at)

2.5 ;
2
g 20 tl‘*\*&;:**”*”"*""w"———————lt 77777777777777777777777
. |
> T, About 40%
'E 1.5 7777777777777777777777777777777?7\7?*“;; 77777777 i 77777777 .
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5 S effective t.c.
© 1.0 | |Model: geometric mean _
& Porosity: 0.2 | by replacing
© T.C. of components (W/m*K): } :
E_ 0.5 +lbrineco6 o brine by COZ
AT CO,: 0.044 |
0.0 ‘ ‘ i i
0 0.2 0.4 0.6 0.8 1

CO, saturation
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Fresh-water aquifers

In collaboration with Dr. Jan
Henninges, GFZ, Potsdam




Thermal conductivity repeat DTPS
Ktzi201 (after start of CO, injection)

Depth! Kizi 201 . HDAR . TC DTPS haseline . DEN . GR ILithnIDgy?m
20 0 MW o ED 6 159m3 30 AP0
Bit si TCDTPS t2 .
—— = — Good overall fit to
" T baseline results (e.g.
F % S K2 marker horizon).
50,0 — z o

Distinct zone with
decrease in thermal

600, conductivity: main zone
i of CO2 injection.
e No clear indications for

CO2 below ,main*
Injection interval.

700.0

-~ T——— NP SO
" ¥ gl

750.0

Collaboration with J. Henninges, GFZ, Potsdam



Can we integrate our monitoring tools into a
single robust deployment package?

Modular Borehole Monitoring System

(\\ Funding provided by CO, Capture Project to implement a
/ Modular Borehole Monitoring (MBM) System, building on
\/ 0

the lessons learned from prior deployments.

Chevron
| =
—— bt SUNCOR



CCP/Modular Borehole Monitoring System

SECARB’s Phase llIl Anthropogenic Test

Washington
County

Citronelle Dome

N

Project Schedule and Milestones

CO, Injection
Site

EeaE Yy
S| © '
s e CO, Pipeline
'-9 o @ oy !
BN |
= <C .Plant Barry
A Mohile )
‘ County
1 > ‘lyj, 27
- Kilometers ' '~ Mobile
0" 37575 || 177156 (i

The CO, capture unit at Alabama Power’s
(Southern Co.) Plant Barry became
operational in 3Q 2011.

A newly built 12 mile CO, pipeline from
Plant Barry to the Citronelle Dome

1 completed in 4Q 2011.

A characterization well was drilled in 1Q
2011 to confirmed geology.

] Two injection wells were drilled in 4Q 2011.

100 to 300 thousand metric tons of CO, will

| be injected into a saline formation over 2 to

3 year period beginning in summer of 2012.

3 years of post-injection monitoring.

Ref: Riestenberg, ARI 2012



@ 2012 SECARB Citronelle Pilot: MBM /-“\l

A
| Multifunction Flat-Pack for Tubing Deployment .
CO2 Capture Project

Flatpack replaces 7 lines

Combined DTS, Heater, DAS
hybrid copper/fiber-optic cable

SIX 20 AWG CONDUCTORS & FOUR FIBER FIMT STAINLESS STEEL TUBE

0.375"

Geophone clamp hydraulic line Components , _
A 6 x 20 AWG 7/28 Tin Coated Copper; O.D.: 0.96 mm (0.037") Nominal
Colored T-01 (FEP); 0.D.: 1.73 mm (0.068") Nominal;
316L FIMT containing gel and 2 x 50/125 & 2 x SM HT Acrylate Coated Fibers; O.D.; 1.8 mm
PTFE Tape (0.003" Thickness) Wrap over Cabled Core
White P-06; O.D.: 7.75 mm (0.305") Nominal
316L Stainless Steel Tube; Wall Thickness: 0.89 mm (0.035”); 0.D.: 9.53 mm (0.375") Nominal

mTmoo®

\ Hybrid copper fiber-optic cable Geophone TEC

/

@ ®

\ Weled Geophone Line
Paulsson Inc.

Tube-in-tube U-tube sampler Coax P/T monitoring cable

Freifeld, Cook and Daley, LBNL & SECARB
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Much more manageable operation .
with only three spools... P\\
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Tubing Deployed Clamping Geophone

0314231 /201172




Temperature (degC)
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Flow profiling — Identify location of
30 ft perforated interval

Temperature (degC)
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Research Frontiers:
Fiber-optic Distributed Seismic

Lawrence Berkeley National Laboratory



What is DAS? How does it work?

e Light pulses are sent into a

- standard optical fibre
= -yl Optcalfire e Backscattered optical signal is

" s g
P
-

.............. analysed to continuously monitor
e ‘ (({(—_ local changes in optical reflectivity

\.\:"‘“’“‘"Qmi“"s il resulting from local dynamic strain
Y, :
e s st of the fibre
* -, rough the fibre .
A XY e OQOutput stream is converted to

seismic records that are effectively
continuous in both distance and
time

— Typically 1 or 2 m and 1-10 kHz

p

E%Ncnmms.ou Lawrence Berkeley National Laboratory




Comparison of DAS and Conventional
Technology .

e 630 surface 3C geophones

Sensors:

e Sources:

682 dvnamite shots * Recorders: — 20m depthin 3 x 3 km array
[ ] I ,
1»{( £ 15 m deoth * GSR-1 surface recorderss 54 live 3C geophones
- d m ae
. 6 P — continuous mode, not — 1470-2355m dEpth
e 2 vibroseis triggered

e 1x Single mode (SM) fiber
— 44,000 Ibs Vibroseis force e Sercel Wavelab recorder

— outside OBS well casing to 2867 m
run at 70%

. Savp’ * SMand MM DAS e 2x Multi-mode (MM) fiber
> recorders — outside OBS well casing to 2867




Permanent Surface Seismic Sensors (Green);
Explosive Shot Holes (Blue); Vibroseis Test Line

103°6'0'W

103°4'0'W

103°20'W

B & Injection and
Observation
Wells
Spacing ~150
m

B




DAS Data Processing: Noise Reduction and
Spectral Rebalance

Noise Reduction

* The statistics of the scattering processes
influence the noise on the resultant acoustic
signal.

* Advanced adaptive stacking algorithms allow
the stacking to become far more efficient,
giving SNR improvements in excess of one
order of magnitude.

Pre (A) and Post (B) Processing
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Adaptive Rebalance: EitenE e
e The native output is strain rate along the s (mse) ) 0 &0 900 1200
sensing fibre.

e Noise-adaptive rebalancing combines

optimally weighted averaging with Signal and
rebalancing of the temporal spectrum which, Noise Spectra:
to good approximation, gives strain Pre — Red

Post - Grey

e Result: axial strain
e not the native strain-rate




Aquistore DAS Data:
Multi-Mode and Single-Mode

The Aquistore Observation Single Mode Multi Mode
well has both single-mode Y

and multi-mode in the same T e

cable cemented behind ' g
casing

Depth (m)

Previously, DAS required
single-mode fibers
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Most existing fibres used for
Distributed Temperature
sensing (DTS) are multi-
mode (MM)

This field trial showed that
DAS performs well with
either type of fibre
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Depth subKB (m)

Depth subKB (m)
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Comparison: DAS and Geophone
Subset of Depths in Each Plot
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Geophone and DAS:
Noise Constant as Signal Decreases
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DAS 2D Walkaway: Dynamite vs Vibroseis Comparison

e Started with
denoised data as
recently delivered

* Processed Walkaway
& comparable
dynamite lines using
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Surface Seismic Using DA
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New Frontiers in Well Integrity and
Reservoir Protection:

Behind Casing Monitoring for
Protection of USDW and Cement
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New Frontiers In Subsurface Signals
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Thank you! )
Questions? it
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