Chemical Looping Combustion, Gasification and Reforming

L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210 USA

November 30, 2017

L.S. Fan "Chemical Looping Technology for Fossil Energy Conversions", Wiley/AlChE (2010). L.S. Fan "Chemical Looping Partial Oxidation: Gasification, Reforming and Chemical Syntheses", Cambridge University Press (2017).

CO₂ Capture from Fossil Energy

Technological Solutions

Chemical Looping Reaction Systems

THE OHIO STATE UNIVERSITY

Luo, S., Zeng, L., Fan, L.-S., Annual Review of Chemical and Biomolecular Engineering. July 2015.

Chung, E.Y., Wang, W.K., Alkhatib, H., Nadgouda, S., Jindra, M.A., Sofranko, J.A., Fan, L.-S. 2015 AIChE Spring Meeting. April 2015. Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., Steinfeld, A. Science. 2010.

Historical Development of Chemical Looping Technologies for Hydrogen Production and Combustion Application

	<u>, , , , , , , , , , , , , , , , , , , </u>				
Technologies	Bergmann Process	Lane Process & Messerschmitt Process	Lewis and Gilliland Process	IGT HYGAS Process	CO ₂ Acceptor Process
Time	1897	1910	1950s	1970s	1970s
Looping Media	MnO ₂ /MnO/Mn ₂ O ₃	Fe/FeO/Fe ₃ O ₄	Cu₂O/CuO	FeO/Fe ₃ O ₄	CaO/CaCO ₃
Reactor Design	Blast Furnace	Fixed Bed	Fluidized Bed	Staged Fluidized Bed	Fluidized Bed
C _x H _y O _z CaO Reducer MnO ₂ MnO ₂ MnO ₂ MnO ₂ MnO ₃ MnO ₅ Mn ₂ O Air Oxidizer spent-A Bergmann Process Coke Air Producer gas Retorts filled with iron ore Brick furnace	Recycle CO ₂ for aeration Solid Fuel Solid Solid Fuel Solid Fuel Solid Solid Fuel Solid Solid Fuel Solid Solid Fuel Solid Solid Fuel Solid Solid Fuel Solid Solid Fuel Solid Sol	O ₂ depleted air MeO _x Hopper producer ga view Air CO ₂ Iron oz	Fuel gas Pretreater Hydrogasifier Gas Gas Coal Fuel gas Residu	Gas purification CO2, aromatics Sulfur, NH3 Spent Sorbent Methanation Sorbent makeup	Fuel Gas Fuel Cao Gasifier Cao Gasifier Cao Steam Air
Lane Process Hydrogen					
				Bergmann	F German Patent 29 384 1897

THE OHIO STATE UNIVERSITY

Bergmann, F. German Patent 29,384, 189

Messerschmitt, A. U.S. Patent 971,206, 1910.; Lane, H. U.S. Patent 1,078,686, 1913

Dobbyn, R.C., Ondik, H.M., et al. U.S. DOE Report DOE-ET-10253-T1, 1978.

Lewis, W.K., Gilliland, E.R. U.S. Patent 2,655,972, 1954

Institute of Gas Technology. U.S. DOE Report EF-77-C-01-2435, 1979.

Recent Chemical Looping Technology Development

	_		-		
Technologies	ARCO GTG	Dupont	Chalmers	Hunosa	Darmstadt
Time	1980's	1990s	2000 onwards	2010 onwards	2010 onwards
Capacity		180M lb/yr	100 kW _{th}	2 MW _{th}	1 MW _{th}
Looping Media	Supported Mn	VPO	Ni; Fe; Mn; Cu	$CaO - CaCO_3$	FeTiO ₃
Reducer Design	Fluidized Bed	Fluidized Bed	Fluidized Bed	Circulating Fluidized Bed	Fluidized Bed
Reactor Product Gas Reduced Catalyst CH ₄ Oxidized Catalyst	generator Air Air Air Air Air Air Pagent Air Bupont Process	Riser Riser Butane	Fresh CaCO ₃ Coal Coal Coal Coal Coal Hur Pro	NOSA Cess	Darmstadt Process

The Ohio State University

Jones, C.A., Leonard, J.J., Sofranko, J.A. Energy & Fuels. 1987. Contractor, R.M. Chemical Engineering Science. 1999. Arias, B., Diego, M.E., Abanades, J.C., Lorenzo, M., Diaz, L., Martinez, D., Alvarez, J., Sanchez-Biezma, A. International Journal Greenhouse Gas Control. 2013. Dudukovic, M.P. Science. 2009.

Ströhle, J., Orth, M., Epple, B. Applied Energy. 2014.

Evolution of OSU Chemical Looping Technology

The Ohio State University

Fan, L.-S., Zeng, L., Luo, S. AIChE Journal. 2015.

A Quick Look at the Periodic Table

Cost Range (\$/kg)

http://mineralprices.com/ http://www.infomine.com/investment/ http://minerals.usgs.gov/minerals/pubs/commodity/ Hammond, C.; The Elements, Handbook of Chemistry and Physics, 81st edition

Oxygen Carrier Selection

Primary Metal	Fe	Ni	Cu	Mn	Со	
Potential Supports	Al ₂ O ₃ , TiO ₂ , MgO, Bentonite, SiO ₂ , etc					
Cost	+	_	-	٢	_	
Oxygen Capacity ¹ (wt %)	30	21	20	25 ³	21	
Thermodynamics for CLC	+	~	+	+	+	
Kinetics/Reactivity ²	_	+	+	+	_	
Melting Points	+	~	_	+	+	
Strength	+	_	~	~	~	
Environmental& Health	~	_	_	2	_	
Hydrogen Production	+	_	_	_	_	

1. Maximum theoretical oxygen carrying capacity; 2. Reactivity with CH_4 ; 3. Mn_3O_4 is the highest oxidation state based on thermodynamics, although not thermodynamically favorable, Mn is assumed to be the lowest oxidation state

Structure Variations of Iron Oxide

Under Redox Reaction

Pellet Reaction Mechanism

Ionic Diffusion for Unsupported Metal/Metal Oxides

$CaO+SO_2+1/2O_2 \rightarrow CaSO_4$

Pellet Reaction Mechanism

Ionic Diffusion for Supported Iron

Partially oxidized Fe with support

Pt mapping

THE OHIO STATE UNIVERSITY

Sun, Z., Zhou, Q., Fan, L.-S. Langmuir, 2012

Methane Partial Oxidation Pathway

Fe Site with Oxygen Vacancy

Classical Thermodynamics: CH₄ and Fe₂O₃

Methane Partial Oxidation Pathway with CO₂

THE OHIO STATE UNIVERSITY

OSU Chemical Looping Platform Processes Two Basic Modes

Reducer Design Concept: Combustion

Coal Gasification for Methanol Production: DOE Baseline (Traditional) Process

ASPEN PLUS v8.4 Condensed Flow Diagram with hierarchy blocks

THE OHIO STATE UNIVERSITY

Coal Gasification for Methanol Production: OSU Process

Simplified Block Flow diagram

ASPEN PLUS v8.4 Condensed Flow Diagram with hierarchy blocks

Cost Analysis: Total Plant Capital Cost for 10,000 ton/day Methanol Production from Coal

Concluding Remarks

- With major advances recently in oxygen carrier development and good results obtained in pilot plant demonstration, commercialization of chemical looping technology for combustion, gasification and reforming applications will be expected in the near future
- Metal Oxide Reaction Engineering and Particle Science and Technology are two underpinning science and engineering fields of close relevance to successful chemical looping technology development

Sponsors

U.S. Department of Energy

National Science Foundation

Ohio Development Services Agency

The Ohio State University

Test Site Host

National Carbon Capture Center

