

May 20, 2021

Country-Wide Distributed Emergency Control Systems of the Transmission Network in the Republic of Georgia

Alexander Didbaridze and Vladimer Korganashvili Georgian State Electrosystem (GSE)

Eduardo S. Palma Schweitzer Engineering Laboratories, Inc. (SEL)

Introduction

- System background
- Emergency Control System requirements
- Contingencies considered

- Distributed vs Centralized
- Reliable Communications
- The future of GSE's Emergency Control System

System Background

Power System Stability

"... is the ability of an electric power system, for a given initial operating condition, to regain a state of **operating equilibrium** after being subjected to a physical disturbance, with most system variables

—IEEE / CIGRE Task Force

GSE Power System Instability

Emergency Control System Benefits System Installed in 2011

 Economic and social

 Power system stability

Year	Blackouts	Brownouts	Total
2014	14	11	25
2015	2	16	18
2016	9	15	24
2017	10	8	18
2018	9	15	24
2019	5	13	18
2020	6	34	40
2021*	4	5	9

*As of April 2021

Contingencies Considered

- N-1 criterion
- Highly probable contingencies (e.g., loss of line)
- Power system studies performed
- Angular instability and overloads
- Coordination with neighboring countries
- Emergency control actions (balancing generation and load after contingency)
- Validation through accurate simulation models

Distributed vs. Centralized Architecture Distributed

Original Emergency Control System

Distributed Architecture Details

Component	No.	Possible Actions
500 kV line	8	 Load and generator shedding HVdc control
500 / 400 / 330 kV interconnection lines	5	 Load shedding Generator shedding if exporting HVdc control Disconnection of other interconnecting lines
220 kV lines	1	 Load and generator shedding
Autotransformers	2	 Load and generator shedding
HVdc converters	2	Load shedding if importingGenerator shedding if exporting
Generators	6	 Load shedding and HVdc control

Distributed vs. Centralized Architecture Centralized

GSE operates both schemes

Load Shedding Controller Logic

 System overview (SCADA complement)

- Thresholds and settings
- Alarms and status

Generator Shedding Logic

Communications Network Considerations

- Use Optical Ground Wire (OPGW) infrastructure
- Cybersecurity
 - Use of firewalls
 - Secure login
 - Secure, complex device passwords
- Careful traffic engineering
- Traffic segregation
- Time distribution

ECS Communication Network

- Synchronous Multiplexers allow separate Ethernet bandwidth:
 - One bandwidth routes critical GOOSE messages
 - Second network bandwidth routes TCP/IP traffic
- Multiplexers distribute precise time synchronization
- Ring networks provide redundancy

Work planned for the future of the ECS

ECS system will become completely independent of SCADA. Connection to GSE SCADA will be removed.

Work planned for the future of the ECS

The Synchrophasor Metering System (SPM) project

Wide Area Monitoring System (WAMS)

Questions?

https://selinc.com/Solutions/Success-Stories/Republic-of-Georgia

Eduardo_Palma@selinc.com