

Factors Impacting CCS Project Development: Recent Project and Regulatory Experience

Preview of Day 2

USEA Saline Storage Cost Modelling Workshop

Presenter Michael Godec Advanced Resources International, Inc.

December 12, 2023

Presentation Outline

Recent Trends in Project Planning/Class VI Permitting

Impacts of these Trends on Project Risks, Costs and Liabilities

- Agenda for Day 2
 - Topic 4: Instruments to Manage Project Risks/Liabilities and Financial Responsibility
 - Topic 5: Industry's View of Costing Project Risks and Liabilities

Recent Trends in Class VI Permitting

3

Impacts on Project Risks, Costs and Liabilities

- EPA's Notices of Deficiency (NODs) point to subjectivity in interpretation of Class VI regulations.
 - □ NOD is sent when the permit application cannot be deemed administratively complete.
 - Regional EPA offices have been focusing on local factors in NOD determinations.
 - Examples include additional analysis on subsurface uncertainty, proof of financial assurance, and legacy well records
 - Blurry line between data for administrative completeness versus data for technical review.
- Regulators are tending to regulate by Guidance, rather than Regulations; requiring additional information and justification, increasing costs
- Important to have periodic conversations with the regulators prior to submittal to minimize NOD requests after application submittal
 - Regulators are emphasizing strong applications that can stand trial at public hearings.
 - □ Inadequate applications could significantly delay technical review.
- Operators must consider EPA's requirement for location-specific data to build Class VI permits
 - Project owners should weigh cost-to-benefit of drilling a test well to gather sites-specific data
 - □ Could later convert to a Class VI project well if built to Class VI standards.
- These trends are adding to costs requiring demonstration of financial assurance

CCS Project Risks – Ideal Storage Site Attributes

1	Optimum Depth	For efficient storage of dense phase CO_2 , the storage horizon would be between 3,000 ft (900 m) and 10,000 ft (3,000 m) of depth.
2	Adequate Storage Capacity	High potential volume of storage, as defined by areal extent, thickness, and porosity.
3	Reliable Reservoir Seal	A confining zone that includes thick, low permeability sealing layer(s) above the storage zone(s).
4	Protection of Potable Sources of Water	The storage horizon needs to be located below potential sources of potable water separated by secure reservoir seals.
5	High CO ₂ injectivity	Sufficient permeability and thickness to inject relatively large amounts of CO ₂ per well.
6	Limited CO ₂ Plume	Geological characteristics that help manage the areal extent of the CO ₂ plume.
7	Verifiable Storage Integrity	Understanding and monitoring the storage formation (CO_2 leakage pathways such as from legacy wells, faults, fractures, etc.).

Pursuing a CCS Project – UNTIL CLOSURE

International, Inc

Storage Project Activities for Which Risk Mitigation Costs May Need to be Considered

Defe Association Discovery and Demotified	Electrical/Athen	
Data Acquisition, Planning, and Permitting	Electrical/Other	Well Costs (one time, except MITs)
Regional Evaluation	Electrical Resistivity Tomography	New Class VI Injection Wells.
Site Characterization	Gravity Survey	New Deep Monitoring Wells
Data Preparation and Analysis	Micro-seismic (Initial)	New Stratigraphic Wells
Initial and Periodic Modeling	Micro-seismic (Annual O&M)	EOR Well Convert to Monitor Wells
Corrective Action Planning	Atmospheric Surveys	EOR Wells Converted to Injectors
FEED	Eddy Covariance - Initial	Well Testing
Class VI Permitting	Eddy Covariance - O&M	MITs (annual)
Leasing	CIR	Plugging and Abandonment (one time)
Public Outreach	Laser System and LIDAR - O&M	Existing EOR wells
Other Permitting	Surface Leak Detection Initial	CO2 Injection Wells
Subpart RR Requirements	Surface Leak Detection Annual	Stratigraphic Wells
Aerial /Satellite Survey	Cased Hole Logging (Annual)	Deep Monitoring Wells
Aerial Survey	Coring (initial)	Groundwater Monitoring Wells
Air Magnetic Survey	Subsurface Monitoring	Vadose Monitoring Wells
Sar and InSAR	Vadose Zone Monitoring (initial)	Operations Monitoring
Geophysical Surveys (Seismic)	Vadose Zone Monitoring (Annual)	Monitor Surface P, T, and Rates
Seismic Planning Q&A	Soil Flux Monitoring (initial)	Gas Composition Sampling
3-D Seismic	Soil Flux Monitoring (Annual)	Corrosion Monitoring
2-D Seismic	Groundwater Monitoring (initial)	Monitor Subsurface P, T, and Fluids
Crosswell	Groundwater Monitoring (Annual)	Tracers
Vertical Seismic Profile		PISC and Closure (One Time)
Tiltmeters		Site Closure Report

Financial Assurance to Mitigate Risks

Financial Assurance demonstration required for:

- Corrective Action Key is the extent of legacy wells requiring mitigation
- □ Injection Well Plugging -- for all injection and monitoring wells associated with project
- Post-Injection Site Care (PISC)
- Site Closure
- Emergency and Remedial Response
- The first 4 are associated with site closure; Emergency and Remedial Response applies to the mitigation of events from traditional operations.
- Project activities must reduce overall risk profile, preferably in a stage gated process.
 - **Qualify:** Quick look of readily available data to assess a prospect

Decreasing project risk

- Design: Closer look on additional site data; model implementation scenarios; assess permitting pathways
- **Permit:** Conduct analyses required to permit for project construction
- **Execute:** Construct and operate the site

Development options should be weighed relative to risks prior to developing Class VI permits.

- Each project has <u>unique</u> subsurface risks, surface considerations, and investor requirements
- Understanding pros and cons of various development and permitting options is key to setting expectations with regard to risks, liabilities, and associated costs.

Stakeholder Concerns with Risk Need to be Addressed

| October 2022 | www.adv-res.com

Agenda for Day 2

Topic 4: Instruments to Manage Project Risks/Liabilities and Financial Responsibility

- Fred Eames, Hunton, Andrews, Kurth
- Chiara Trabucchi, Industrial Economics, Inc.

Topic 5: Industry's View of Costing Project Risks and Liabilities

- John Zuckerman, ZuCO2/Pelican
- Tracy Evans, CapturePoint
- Angie Contreras, Oxy
- David Lawson and Joseph Jepshson, Carbon TerraVault

