

Waste water injection and possibly induced seismicity in central California

T.H.W. Goebel¹, F. Aminzadeh², E.Hauksson¹, J.-P. Ampuero¹ ¹ Earth Sciences, Caltech, ² Petroleum Engineering, USC

Outline

1. Objectives of the ISC: An overview

2. Induced seismicity in central CA:
a) Identification criteria
b) Fluid migration and the role of fault structure

ISC purpose:

- Unique combination of expertise in earthquake seismology and petroleum engineering
- Interaction between members of industry, regulatory agencies and academia
- Advance understanding of subsurface fluid injection using empirical and theoretical approaches

Original source: D.Dillion

School of Engineering

USCViterbi

SC

Induced Seismicity Consortium

Differences in spatial-temporal clustering between tectonic and induced earthquakes

Induced seismicity, earthquake triggering & stress transfer in OK

Maximum expected magnitude as fct. of injected volume

Diffusion in fractal

10¹⁵

Seismic Moment [Nm]

10¹⁴

10¹³

fault network

2. Potentially induced seismicity in central California

A comparison between fluid injection and seismicity in central US and CA

A comparison between fluid injection and seismicity in central US and CA

A comparison between fluid injection and seismicity in central US and CA

2b. Identification criteria

Identification criteria: Quantitative expansion of Davis & Frohlich, 1993

- 1. Spatial, temporal correlation
- 2. Different from background seismicity, first events within a particular area
- 3. Pressure changes caused by injection are high enough to encourage seismicity

Spatial correlation: WD wells and M>3 events

Temporal correlation

Background injection and seismic activity

Rate-change compared to background

- Poisson background probability
- Probability of random coincidence of injection peak and seismic activity
- Significant ratechange

Rate changes: Do injections clock-advance the following seismic events?

- largely insensitive to space/time window
- insensitive to secondary aftershocks
- even small rate changes are detectable
- suitable for plate-boundary and intra-plate regions

Probabilistic assessment: Example 1

2c. Migration patterns and fault structure

Event migration: Pore pressure diffusion

b-value variations during injection

Coupling between fault structure and permeability

Realistic reservoir and fault structures: Faults as fluid conduits and barriers

Hosseini et al., in prep.

Conclusion

- 1. We developed a method to detect likely induced events based on correlations between injection and seismic activity
- Induced seismicity may show pronounced foreshock activity over diffusive space-time scales
- **3. Fault structures** may **control** diffusive processes and **maximum reach of injections**

Future work

- Both high and low b-values observed during injection ... ? → statistical and physical models needed
- 2. Potential for fault activation as a function of injection operations and distance
- Probability of exceeding, e.g., M>4 as a function of tectonic setting and injection volumes

- Thank you -

Additional Slides

Temporal correlation: a-priori defined injection activity

Triggering type/criteria: gradual (3 mo.) vs. abrupt (1 mo) increase in injection rates

Threshold: 10-600 kbbl

Rate changes: Do injections clock-advance the following seismic events?

Percentile rate change compared to background

Probabilistic assessment: Example 2, no detection

- long injection activity
- no significant rate change

Well-head pressure and injected fluid-volume

Temporal correlation: Injection and seismicity rates

Probabilistic assessment

Earthquake sequence	P _{ran}	P _{poi}	<i>R</i> -ratio
1: LH1	0.03	7*10 ⁻³	0.37 (0.42), <i>p</i> = 0.01
2: KR4	1*10 ⁻³	2*10 ⁻⁵	0.40 (0.45), <i>p</i> = 0.10
3: KR6	1*10 ⁻³	2*10 ⁻⁵	0.43 (0.48), <i>p</i> = 0.12
4: JT1	0.02	0.04	0.37 (0.45), <i>p</i> = 0.02