

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office Overview

Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell Technologies Office

Fossil Energy Hydrogen Workshop

July 23 2020

Background and Guiding Legislation: Hydrogen and Fuel Cell Office

DOE efforts in H₂ and fuel cells began in the mid-1970s, ramped up 1990s, and 2003-2009

Energy Policy Act (2005) Title VIII on Hydrogen

- Authorizes U.S. DOE to lead a comprehensive program to enable commercialization of hydrogen and fuel cells with industry.
- Includes broad applications: Transportation, utility, industrial, portable, stationary, etc.

Hydrogen and Fuel Cells Office To Date

- >\$2.4B since 2003, over 3,000 projects include: H₂ production, delivery & infrastructure, storage, fuel cells and cross cutting activities (safety, codes, standards, tech acceleration/validation, manufacturing, market transformation, systems development and integration, energy storage, education, workforce development)
- Hundreds of organizations & extensive collaborations including national lab-industry-university consortia

Reduced fuel cell cost 60%, quadrupled durability, reduced electrolyzer cost 80%, reduced storage tank cost 30%, and other advances, and *enabled 1,100 patents and* commercial H₂ and fuel cell systems across applications

Budget and Focus Areas in EERE H₂ and Fuel Cell Technologies Office

EERE HFTO Activities	FY 2020 (\$K)
Fuel Cell R&D	26,000
Hydrogen Fuel R&D	45,000
Hydrogen Infrastructure R&D (included in Hydrogen Fuel in FY21)	25,000
Systems Development & Integration (formerly Tech Acceleration)	41,000
Safety, Codes, and Standards (included in Systems Development & Integration in FY21)	10,000
Data, Modeling and Analysis	3,000
Total	\$150,000

HFTO – Hydrogen and Fuel Cells Breakdown FY 2020

- Production: Water splitting electrolysis (high and low temperature), PEC, STCH, biomass/biological
- Infrastructure: Materials, delivery, components & systems
- Storage: materials-based, carriers, tanks, liquid
- Fuel cells: materials, components, systems, reversible FCs
- Systems Development & Integration: Tech Acceleration includes hybrid/grid integration, new markets, heavy duty, energy storage, manufacturing industrial applications (e.g. steel) safety, codes, standard, workforce development

*Will be moved under Hydrogen Fuel R&D in FY 2021

Key Programmatic Area: H2@Scale

H2@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

Includes Early stage R&D: Funding Opportunity Announcements (FOAs) for industry, universities and national labs, including consortia

2 New Lab Consortia Planned FY20:

H2NEW

 Million Mile Fuel FO. Cell Truck

And includes later stage RD&D:

Leverages private sector for large-scale demos New H2@Scale demonstration projects announced Texas, Florida, Midwest (TBD), complements California deployments

CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

Bringing Together Industry and Labs to Accelerate Progress – Examples

Lab-Based Consortia	To Be Formed	Lab - Industry Bridge	Private Sector
<image/>	 New Lab Consortia: H2NEW Million Mile Fuel Cell Truck Consortium (M2FC) 	 H2@Scale Consortium CRADAs Strategic Partnership Projects (SPPs) L'Innovator Technology Commercialization Fund 	 FOA projects SBIRs Prizes State funding Demos & Deployments Partnerships US Industry Roadmap
	H. materials R&D enable	codes & standards reduce reg	ulatory harriers

Safety – R&D, training, lessons learned, best practices, enable safe infrastructure

Consortium

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Examples of Activities to Enable H2@Scale

Assessing resource availability. Most regions have sufficient resources. 4* new H2@scale demonstration projects in Texas, Florida and Midwest.

*Includes 1 project by Office of Nuclear Energy

Hydrogen Production - Electrolysis

Today's Polymer Electrolyte Membrane (PEM) electrolyzers require 65-75% cost reduction

\$2/kg H2 is achievable at about \$0.03/kWh electricity cost and high utilization

Source: IEA Hydrogen Future Report, 2019

Source: US Industry H2 Roadmap, March 2020

Strategy:

Focus on low and high temp electrolyzer R&D to reduce cost, improve durability, efficiency Diverse methods and innovations for water splitting, bio options (non fossil energy)

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Example of H2@Scale Projects

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Note: Based on original submission. To be updated based on project finalization.

Integrated, Hybrid Systems and Energy Storage

Cross-cutting Materials Compatibility R&D

H-Mat Consortium conducts R&D on hydrogen effects on polymers and metals

Focus of current activities include:

- 1) Reduce expansion of seals in hydrogen by 50%
- 2) Enhance life of vessels by 50% through improved understanding of crack nucleation.
- 3) Enhance fracture toughness of high-strength (>950 MPa) steels by 50%.

For more information:

Website: energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium Email: h-matinfo@pnnl.gov

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Example of Recent Activities: Comparison of Hydrogen Carriers

- At 50,000 kg H₂ per day, methanol produced at high volume in the gulf coast area, and transport to California can be cost competitive with "locally" produced gaseous hydrogen.
- Ammonia and methylcyclohexane have a cost premium over "locally" produced gaseous hydrogen

Examples of Global Collaboration

Coordinating across global partnerships: IPHE, Ministerials, Mission Innovation, IEA, etc. Global Center for Hydrogen Safety established to share best practices, training resources and information

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

Elected Chair and Vice-Chair, 2018

Key Activities: Harmonization of codes & standards, Information sharing on safety, policies, regulations, analysis, education. Task force on developing H₂ production analysis methodology to facilitate international trade, global RD&D monitoring

www.aiche.org/CHS

Hydrogen and Clean Energy Ministerials Mission Innovation Hydrogen Challenge International Energy Agency

Point of Point of Use Production Tank-to-wheel Well-to-tank Well-to-wheel Cradle-to-Gate Gate-to-grave Cradle-to-grave Whole life cycle GHG emissions (Source: Abad et al., Energy policy 138 (2020) 111300)

Hydrogen Production Analysis Task Force (H2PA TF)

Addressing Priority from Industry and Governments

Harmonize approach and develop framework to facilitate global trade of hydrogen

Scope

Develop a mutually agreed upon analytical methodology for determining greenhouse gas (GHG) and other emissions associated with H2 production.

Next Steps and Engagement

Continue to engage stakeholders, industry and experts to develop framework for methodology

Application of methodology will help facilitate market valuation and global trade in 'clean' hydrogen by recommending a common approach with adoption not mandatory and subject to each member's discretion and circumstance.

\$64M Just Announced: H2@Scale New Markets

Project Selections of the \$64M H2@Scale FOA Issued in January 2020

- **18 projects chose**n to advance H2@Scale's next round of RD&D for affordable hydrogen production, storage, distribution, and use
- Includes collaborations with EERE's Advanced Manufacturing Office (AMO) and Vehicle Technologies Office (VTO)
- Focus areas: Manufacture of reliable and affordable electrolyzers; development of low-cost, hi-strength carbon fiber for H2 storage tanks; IDing durable and cost-effective fuel cell systems and components for medium- and heavy-duty trucks

Department of Energy

Energy Department Announces Approximately \$64M in Funding for 18 Projects to Advance H2@Scale

JULY 20, 2020

Press Release

https://www.energy.gov/articles/energy-department-announces-approximately-64mfunding-18-projects-advance-h2scale

Selectee Name	Location (city, state)	Project Title	Federal Share				
TOPIC 1: ELECTROLYZER MANUFACTURING R&D							
		Advanced Manufacturing Processes for Gigawatt-Scale					
3M Company	Saint Paul, MN	Proton Exchange Membrane Water Electrolyzer Oxygen Evolution Reaction Catalysts and Electrodes	\$4,854,808				
Giner ELX, Inc.	Newton, MA	Integrated Membrane Anode Assembly & Scale-up	\$4,592,664				
Proton Energy Systems, Inc.	Wallingford, CT	Enabling Low Cost PEM Electrolysis at Scale Through Optimization of Transport Components and Electrode Interfaces	\$4,400,000				
TOPIC 2: ADVANCED CARBON FIBER FOR COMPRESSED HYDROGEN AND NATURAL GAS STORAGE TANKS							
Collaborative Composite Solutions Corporation	Oak Ridge, TN	Melt Spun PAN Precursor for Cost-Effective Carbon Fiber in High Pressure Compressed Gas Tankage	\$2,700,540				
Hexagon R & D LLC	Lincoln, NE	Carbon Composite Optimization Reducing Tank Cost	\$2,599,945				
University of Kentucky	Lexington, KY	Low-Cost, High-Strength Hollow Carbon Fiber for Compressed Gas Storage Tanks	\$2,415,576				
University of Virginia	Charlottesville, VA	Low-Cost, High-Performance Carbon Fiber for Compressed Natural Gas Storage Tanks	\$2,701,552				
TOPIC 3: FUEL CELL R&D FOR HEAVY-DUTY APPLICATIONS; SUBTOPIC 3A: MEMBRANES FOR HEAVY-DUTY APPLICATIONS							
3M Company	Saint Paul, MN	Extending PFSA Membrane Durability Through Enhanced Ionomer Backbone Stability	\$999,889				
The Lubrizol Corporation	Wickliffe, OH	Antioxidant Functionalized Polymers for Extended HD Polymer Electrolyte Membrane Lifetimes	\$1,000,000				
Nikola Corporation	Phoenix, AZ	Advanced Membrane and MEA for HD Fuel Cell Trucks	\$998,376				
University of Tennessee: Knoxville	Knoxville, TN	A Systematic Approach to Developing Durable, Conductive Membranes for Operation above 120°C	\$1,000,000				
TOPIC 3: FUEL CELL R&D FOR HEAVY-DUTY APPLICATIONS; SUBTOPIC 3B: DOMESTICALLY MANUFACTURED FUEL							
Cummins	Columbus, IN	Cummins PEM Fuel Cell System for Heavy Duty Applications	\$3,000,000				
Plug Power	Latham, NY	Domestically Manufactured Fuel Cells for Heavy-Duty Applications	\$2,987,181				
TOPIC 4: H2@SCALE NE	W MARKETS R&D	-HYSTEEL					
Missouri University of Science & Technology	Rolla, MO	Grid-Interactive Steelmaking with Hydrogen (GISH)	\$4,000,000				
University of California: Irvine	Irvine, CA	Solid Oxide Electrolysis Cells (SOEC) integrated with Direct Reduced Iron plants (DRI) for the production of green steel	\$4,043,993				
TOPIC 5: H2@SCALE NEW MARKETS DEMONSTRATIONS; SUBTOPIC 5A: MARITIME DEMONSTRATIONS							
Hornblower Yachts	San Francisco, CA	A Marine Hydrogen Demonstration	\$7,994,208				
TOPIC 5: H2@SCALE NEW MARKETS DEMONSTRATIONS; SUBTOPIC 5B: DATA CENTER DEMONSTRATIONS							
Caterpillar Inc.	Mossville, IL	System Demonstration for Supplying Clean, Reliable and Affordable Electric Power to Data Centers using Hydrogen Fuel	\$6,000,000				
TOPIC 6: TRAINING AND WORKFORCE DEVELOPMENT FOR EMERGING HYDROGEN TECHNOLOGIES							
Electric Power	Palo Alto, CA	Developing a Workforce for a Hydrogen Technology	\$2,000,000				

Thank You

Sunita.Satyapal@ee.doe.gov

Looking for more info? #H2IQ

www.energy.gov/fuelcells www.hydrogen.energy.gov

"No one can whistle a symphony. It takes a whole orchestra to play it." –H. Luccock

Additional Information

DOE-Funded Innovation Driving Impact

Fuel Cell Catalysts

Catalyst and Supports for PEM Fuel Cells 3M

Electrolyzers

Electrolyzer System Proton Series

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

PEM Electrolyzer System Giner

Hydrogen Tube Trailers

Hydrogen Tube Trailers Hexagon Lincoln

Forklifts

Class-1, -2, and -3 Forklifts Plug Power (GenDrive FCs)

Optimized 129L Tank Quantum Technologies

More Information and Resources

Download the H2IQ resource for free:

energy.gov/eere/fuelcells/downloads/increase-your-h2iq-training-resource

Join monthly H2IQ hour to learn more about hydrogen and fuel cell topics

energy.gov/eere/fuelcells/fuel-cell-technologies-office-webinars

Visit H2tools.org for hydrogen safety and lessons learned

h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells hydrogen.energy.gov