Environmental Health Considerations of Point Source Carbon Capture

Workshop on Measurement, Monitoring and Controlling Potential Environmental Impacts from the Installation of Point Source Capture

Lee Ann Hill, MPH Director, Energy and Health

Bringing science to energy policy

About **PSE**

PSE Healthy Energy (PSE) is a nonprofit energy science and policy research institute. Our mission is to generate science-based energy and climate solutions that protect public health and the environment.

- We apply rigorous scientific methods to policy-relevant research questions.
- We bring multidisciplinary expertise, including engineering, environmental science and public health.
- We connect diverse audiences with actionable scientific data.

www.psehealthyenergy.org

Road Map

- Carbon capture in the context of climate goals
- Carbon capture in the context of public health
- Environmental health data and research needs
- Select elements for further consideration

Climate context of point source carbon capture: global implications

- Well-established increasing infrequency, intensity and compounding nature of impacts associated with climate change.
- Even with aggressive decarbonization scenarios, carbon capture and carbon dioxide removal are required to meet climate goals.
- Select, hard-to-abate/decarbonize industries with centralized point sources offer opportunities for strategic deployment of carbon capture technologies.

Health context of point source carbon capture: local, regional implications

• Place matters

- Particularly in the context of air quality and facility emissions to air
- Proximity of nearby populations
- Characterizing cumulative burden of nearby communities
 - Demographics and population characteristics
 - Pollution burden
 - Health vulnerabilities
 - Existing/projected climate risks

Environmental health data and research needs

Comprehensive picture of on-site air pollutant emissions

- Air pollutants: Criteria air pollutants, hazardous air pollutants (speciated VOCs), additional air pollutants identified as associated with particular capture substrates / technological approaches and chemical transformation byproducts
- **Measurement and monitoring:** Utilizing standard analytical methods, health-relevant limits of detection, and measurements with temporal resolution to assess appropriate durations of exposure
- Emissions characterization: Emissions factors for various emissions types/activities, including those beyond normal operations (construction, ancillary equipment, off normal events, equipment failures)
- Exploring wide range of carbon capture technologies and sector applications

Environmental health data and research needs

Waste & byproduct management

- Characterization of waste byproducts following pretreatment or capture phases
- Characterization of captured CO₂ stream
- Quality determined by relevant local, state, federal standards based on intended disposal method or utilization approach

Safety, risk management, emergency response

- CO₂ transport and storage (on and off site)
- Incorporation of additional technologies, equipment into risk management plans and emergency response protocols
- Unintentional loss of containment events (CO₂, other releases)

Environmental health data and research needs

Additional quantitative analyses and assessments

- Scaling considerations
- Exploration and efficacy of mitigation measures
- Enhanced energy demand requirements and associated emissions
- Modeling primary air pollutant emissions and secondary pollutant formation
- Life cycle and alternatives assessment
- Co-benefits

Key Elements for Further Consideration

- **Data disclosures** of system inputs and anticipated outputs can inform thorough hazard characterization efforts; can inform prioritization of health-relevant compounds for additional monitoring/modeling
- **Development and required reporting of emissions factors** for various emission types are needed for criteria and hazardous air pollutants
- Data collection efforts designed with varied public health applications in mind, including measurements that allow for comparison to available health-based guidance values, evaluation of various health endpoints and exposure durations
- **Consideration of baseline community characteristics** from the perspective of cumulative burden, as well as projected risks
- **Community input and perspectives** needed to identify key community concerns and inform research questions and data collection efforts
- **Field-based and modeling studies** needed to understand the risks and impacts of individual applications on air quality and human health
- Clear synthesis and communication strategies needed to share findings with diverse audiences

Thank you. Questions?

Lee Ann Hill, MPH

Director, Energy and Health lhill@psehealthyenergy.org

www.psehealthyenergy.org