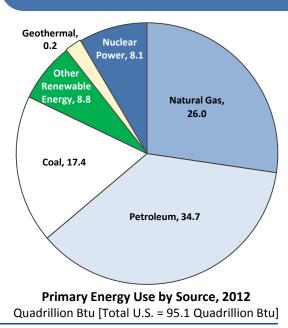


SubTER Tech Team (Subsurface Technology and Engineering RD&D)

Co-Chairs: Doug Hollett (EERE) and Julio Friedmann (FE)

FE, EERE, NE, EM, SC, ARPA-E, OE, EPSA, CI, EIA

USEA July 22, 2014


Subsurface Control for a Safe and Effective Energy Future

Adaptive Control of Subsurface Fractures and Fluid Flow

Intelligent Wellbore Systems Subsurface Stress & Induced Seismicity

Permeability Manipulation New Subsurface Signals

Energy Field Observatories

ENERGY PRODUCTION

- Increase U. S. electrical production from geothermal reservoirs
- Increase U.S. unconventional oil and natural gas for industrial and power applications and export
- Enhanced secure domestic supply

ECONOMIC & SOCIAL BENEFITS

- Retain U. S. leadership
- Increased public confidence
- Increase revenues (taxes and royalty) to Federal, State, and local governments

PROTECT THE ENVIRONMENT

- President's Climate Action Plan: Safely store CO₂ to meet GHG emissions reduction targets
- Safe storage/disposal of nuclear waste
- Reduced risk of induced seismicity
- Protect drinking water resources
- Alternatives for energy storage

ENERGY SECURITY

NNSA core missions

Common Challenges: Solvable or "Chasms"?

Discovering, Characterizing, and Predicting

Efficiently and accurately locate target geophysical and geochemical responses, finding more viable and low-risk resource, and quantitatively infer their evolution under future engineered conditions

Accessing

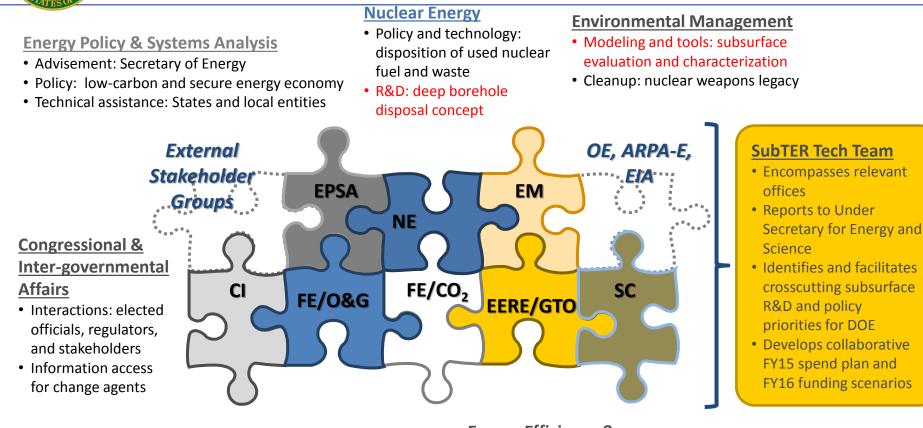
Safe and cost-effective drilling, with reservoir integrity

Engineering

Create/construct desired subsurface conditions in challenging high-pressure/hightemperature environments

Sustaining

Maintain optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution


Monitoring

Improve observational methods and advance understanding of multi-scale complexities through system lifetimes

Coordination of Program Roles

Fossil Energy/Oil & Gas

- R&D and access: clean, affordable traditional fuel sources
- R&D: drilling, well construction and integrity, and hydraulic fracturing technologies

Fossil Energy/Carbon Storage

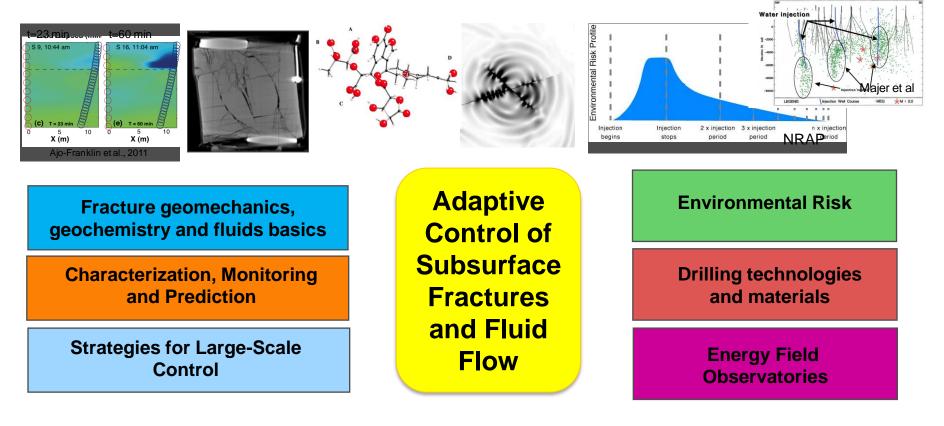
- Policy and technology: challenges of CO₂ storage • R&D: locate, access, and to inform regulators, industry, and the public • R&D: CO₂ offshore and
- onshore storage

Energy Efficiency & Renewable Energy/ **Geothermal Technologies** Office

develop geothermal resources R&D: access, create, and sustain enhanced geothermal

systems (EGS)

Science


- Basic research: geology, geophysics, and biogeochemistry
- Expertise: subsurface chemistry, complex fluid flow

CFO

Lab Big Idea: March 12-13, 2014 Adaptive Control of Subsurface Fractures and Fluid Flow

GOAL: Real-time measurement and control of fracture networks & associated flow **APPROACH:** Experiments, simulations, theoretical frameworks, & field tests **OUTCOMES:** Improved recovery factors, reduced operational and environmental risks, safety and reliability, new energy sectors – <u>major policy implications</u>

Field observatories: critically important SubTER efforts

Required (!) for fundamental subsurface progress

- Validation through monitoring/production
- Must manage restrictive subsurface environment well or fail
- Strong industry engagement
- Multiple potential business models:
 - Fit-for-purpose, dedicated site (FORGE, RMOTC)
 - Isolated, targeted effort (Frio CCS pilot)
 - Opportunistic (Weyburn)
- Expensive: individual sites = \$10-25M/year commitment
- Each site: geology must accurately represent key phenomena

Validation of new results and approaches at commercial scale; Road-test monitoring, stimulation, and permeability control tools

Clear Alignment with Industry and Stakeholder Priorities

HALLIBURTON

- Nanotechnology
- Photonics
- Interfacial Chemistry
- Complex Fracture Modeling in Real-time
- Spectroscopy at the Bit
- Green Chemistry

the Bernard M. Gordon Center for Subsurface Sensing & Imaging Systems

- Subsurface Sensing and Imaging
- Physics-Based Signal Processing and Image Understanding

Society of Petroleum Engineers

- Higher Resolution Subsurface Imaging
- Challenges in Reusing Produced Water
- In-Situ Molecular Manipulation
- Increasing Hydrocarbon Recovery Factors
- Carbon Capture and Sequestration

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

Grand Challenges for Earth Resources Engineering

- Make the earth transparent
- Understand engineering control of coupled subsurface processes
- Minimize environmental footprint
- Protect people

- Recognizing the signal within the natural variability
- Identifying feedback between natural and perturbed systems
- Quantifying consequences, impacts, and effects
- *Effectively communicating uncertainty and relative risk*

SubTER Workshop: Identified Challenges

SubTER Workshop With National Lab Partners - March 14, 2014

New subsurface signals

• Are there previously unexploited, measurable rock properties that can be used to further interrogate the subsurface? Are there new ways to integrate multiple signals?

Stress state beyond the borehole

• Are there new ways to measure the stress orientation and magnitude at various scales away from the borehole?

Multi-scale fracture evolution

• How can we improve our understanding of the initiation, growth, distribution and reactivation of natural and induced fractures across key scales?

Coupled physicochemical signatures

• How can we use natural and engineered geochemical signatures to further understand subsurface environments?

Fit for purpose modeling

• What are novel and advanced computational approaches that can be applied to subsurface interrogation?

Permeability Manipulation

• How can new knowledge of fracture mechanics and other fundamental physical properties of earth materials be applied to design more effective engineering procedures and help us understand the sustainability of engineered subsurface environments?

Novel stimulation methods

• Are there new ways to apply alternative energy sources to remotely affect subsurface bodies? Are there novel/advanced fluids and materials and new practices associated with these materials that could be used in subsurface engineering?

Beyond drill bits

• Are there new technologies for faster and cheaper access to the subsurface? How can advances in characterization and monitoring be most effectively coupled in real time with subsurface accessing and engineering (e.g., seeing ahead of the bit)?

Wellbore integrity

• How can risks with wellbore integrity be mitigated? What are new materials, self-healing cements? Can new sensors be developed to identify problems? Can we develop new, more effective and less costly remediation techniques?

7/28/2014

SubTER Crosscut: Pillars and Themes

Adaptive Control of Subsurface Fractures and Fluid Flow										
Intelligent Wellbores	Subsurface Stress & Induced Seismicity	Permeability Manipulation	New Subsurface Signals							
Materials: adaptive cements, muds, casing	Stress state beyond the borehole	Physicochemical rock physics, including fluid-rock interactions	Diagnostic signatures of system							
Real time, in-situ data acquisition and transmission system		New approaches to remotely	behavior and critical thresholds							
Diagnostics tools, remediation tools and techniques	Signal acquisition and processing and inversion	characterize in-situ fractures and to monitor fracture initiation/branching and fluid flow	Autonomous acquisition, processing and assimilation approaches Integration of different measurements collected over different scales to quantify critical parameters and improve spatial and temporal resolutions							
Quantification of material/seal fatigue and failure	Localized manipulation of subsurface stress	Manipulating (enhancing, reducing and eliminating) flow paths								
Advanced drilling and completion tools (e.g., anticipative drilling &		paris								
centralizers) Well abandonment analysis/ R&D	Risk assessment	Novel stimulation methods								

Energy Field Observatories: (Wells, Ops and Logistics)

Impact of R&D Crosscut – <u>Select Examples</u>

Energy Field Observatories: (Wells, Ops and Logistics)

FY16 SubTER expanded programs FY16 Programs FY16 Programs	Wellbores	ores Induced Seis		Permeability Manipulation		New Subsurface Signals	
	materials • Additive manufacturing of sensors • Downhole power and	FY16 SubTER	• Far-field stress measurement • High-T	FY16 SubTER	 Shape- memory alloys In-situ, real time analysis 		 Geophysically detectable nano- injectates Muon tomography
	expanded programs	<pre>wireline logging • Mini- fracs • MEQ focal</pre>	expanded programs FY16	of flow • High-T proppants • Polymer gels	FY16 SubTER expanded programs	 Autonomous acquisition & processing Joint inversion of 	
	steerable	FY16 Programs	mechanism inversion • Borehole-	Programs	 Interfacial chemistry Fracture 	FY16 Programs	data sets • Tracers • Seismic
What is Industry Doing?	• Cements • Fiber Optics • P/T sensors	What is Industry Doing?	based measurement • Microseismic processing	What is Industry Doing?	stimulation Geometry- based ap<u>proach</u> Chemicals 	What is Industry Doing?	reflection, attributes, processing SubTER

Workshop Goals and Objectives

- Do these challenges and related R&D directions, accurately represent the technology landscape related to fracture propagation and fluid flow in the subsurface?
- Are there additional areas or themes within this topic, which should be considered?
- Is this a high-impact problem or challenge?
- Is the topic sufficiently open ie, does it address the broad problem, and is it appropriately open to new ideas, approaches, directions?
- Does solution of this problem, result in enduring benefit to the United States economic, environment etc? What could be the impact?
- What are the gaps between what is being pursued in the private sector, vs publicly funded R&D?

7/28/2014