Removal of CO₂ from the Atmosphere

Dr Tim Fox

Head of Energy and Environment Institution of Mechanical Engineers @TimFox_IMechE

IMechE reports

Institution fully engaged in the public debate:

Improving the world through engineering

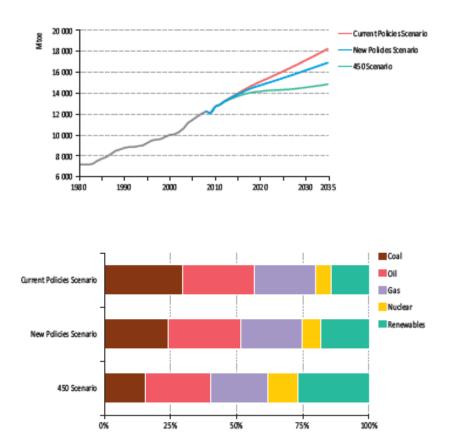
Introduction

Presentation overview

- Removing CO₂ from Air
- Removal techniques
- Air capture machines
- State of play

Institution of **MECHANICAL**

- CO₂ recycling
- Carbon pricing
- Unlocking innovation
- Conclusions


Improving the world through engineering

More energy – mainly fossil

• Global growth

Institution of **MECHANICAL**

- IEA predicts 40% increase in primary energy demand by 2035, with 90% of growth in non-OECD.
- Possible doubling of today's demand by 2050, tripling over 21st century.
- 81% of primary energy currently from fossil fuels (coal, oil, gas), potentially still 75% in 2035 [IEA].

On-track for mean global temperature rise of 3.5°C by 2100.

Institution of MECHANICAL ENGINEERS

Removing CO₂ from air

• Principal advantages

- Removes CO₂ regardless of location.
- Tackles difficult sources (transport, domestic, dispersed industry; circa 50% of global emissions).

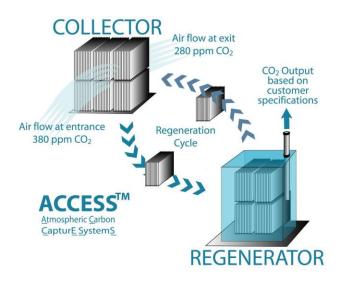
- Enables `carbon recycling' through `closed' carbon loops.
- Puts a credible `ceiling price' on CO₂ emissions.
- Can address past emissions (and enable geo-engineering?).

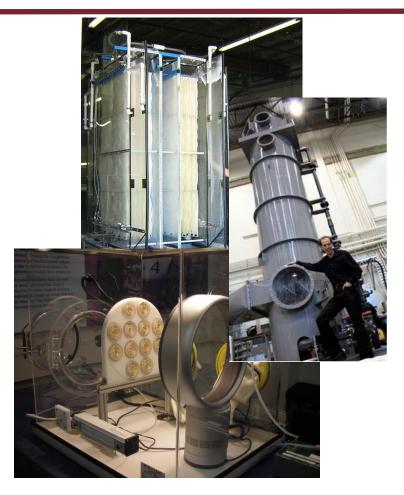
Improving the world through engineering

Removal techniques

Top candidates

- Air capture machines (Direct Air Capture DAC).
- Bioenergy with Carbon Capture and Storage (BECCS).
- Augmented ocean sequestration.
- Biochar production through pyrolysis.
- Reforestation and afforestation.





Air capture machines

• Key process steps

- Capture CO₂ to filter medium.
- Remove CO₂ from filter.
- Storage of CO₂ or recycle.

• Early Pioneers

Klaus Lackner, Peter Eisenberger, David Keith, Aldo Steinfeld

Institution of MECHANICAL ENGINEERS

State of play

• Entrepreneurial commercial players

- Carbon Engineering
- Global Thermostat
- Kilimanjaro Energy
- Sapphire Energy
- Air Fuels Synthesis
- Climeworks

CO₂ markets

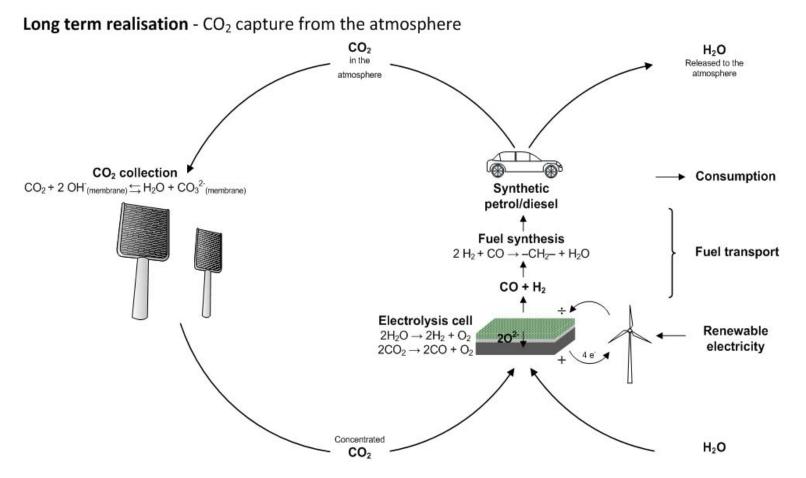
- Enhanced Oil Recovery (EOR)
- Algae for Fuel (Aviation)
- Synthetic Fuel (Aviation)
- Chemical processing
- Horticulture
- Military

CO_2 recycling - 1

• Challenge of transportation fuels

- High energy densities found in hydrocarbon liquid fuels.
- Replacing enormous global infrastructure for liquid fuels.

Carbon recycling for fuel


Institution of **MECHANICAL**

- Captured CO₂ used as feedstock for a biological or chemical process for production of fuels.
- 'Closed-loop' carbon cycle when CO₂ from air capture.
- Algea based production
 - CO₂ and H₂O as feedstock to algae cultivated in sunlight.

Institution of MECHANICAL CO₂ recycling - 2

Carbon recycling and synthetic fuels

From Mogen Morgensen, DTU Energy Conversion, Technical University of Denmark

Improving the world through engineering

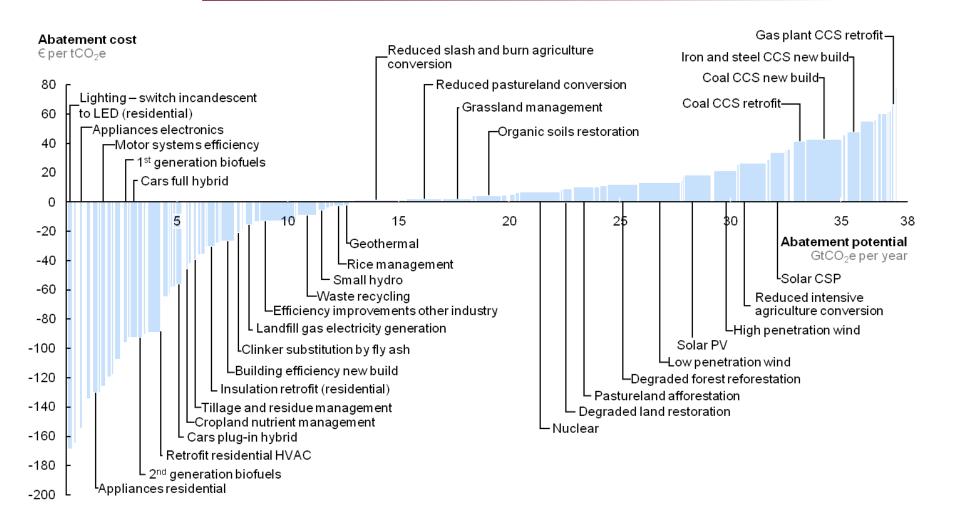
Institution of MECHANICAL ENGINEERS

Carbon price challenge

• Emitting greenhouse gases is largely cost-free

 Challenge is setting a credible, meaningful penalty and creating a mechanism to apply it.

Two choices


- Regulate for outright global emissions ban; eg HFCs, CFCs.
- Economic instruments that create a cost for emitting.

• Challenge for economic instruments

- Direct carbon tax or tradable permits scheme?
- Price setting clear for tax, opaque for tradable permits.
- Setting the price is highly problematic; future energy price sensitivity, unforeseen consequences, hypothecation.
- Need credible, logical, tenable, justifiable price applied through transparent, legitimate mechanisms.

Setting the carbon price

McKinsey & Co., 2010, Impact of the financial crisis on carbon economics: Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve.

Improving the world through engineering

Unlocking innovation

• How to levy price and drive innovation?


- Requirement to abate emissions, or undertake air capture and CO₂ sequestration through own machines, or pay third party machine fleet operators to create 'negative emissions'.
- Requirement could be applied initially to the G20 nations, who collectively account for 80% of global emissions.
- Price competition

Institution of **MECHANICAL**

- Competition amongst fleet operators would innovate the costs out and drive the 'ceiling price' down.
- Drive Cleantech innovation.

Chances of success?

- Using air capture to set carbon price satisfies three rules for successful technology fixes to social problems.
- Embodies cause-effect relationship connecting problem to solution.
- Effects of fix are assessable using relatively unambiguous criteria.
- R&D necessary to realise the technology improves an established core that already exists.

Improving the world through engineering

Institution of **MECHANICAL**

Conclusions

Access to secure and affordable energy crucial

- Essential to human progress and increased well-being.
- Demand expected to increase substantially in 21st century.
- Continued fossil fuel usage threatened by environmental risk.
- Removal of CO2 from the atmosphere
 - Removal can take place anywhere independent of source.
 - Several technologies available and in development.
 - Enables negative emissions and carbon recycling.

Direction of travel

Institution of **MECHANICAL**

- Entrepreneurs stepping into niche markets
- Potential to fix market failures and drive innovation to reduce costs of clean technologies.
- Secures continued exploitation of affordable fossil fuels and embedded infrastructure while reducing environmental risk.

• Air capture technology

- Several machines in (commercial) development.
- Enables negative emissions and carbon recycling.
- Potentially helps secure continued exploitation of embedded infrastructure while reducing environmental risk.
- Potential to fix market failures and drive innovation to reduce costs of clean technologies.
- Direction of travel
 - Entrepreneurs stepping into niche markets.

Thank you

@TimFox_IMechE

Improving the world through engineering