

Legal and Regulatory Frameworks and Incentives for CCS/CCUS

Prepared for: United States Energy Association (USEA)

Consensus Program Briefing CO₂ Storage – Optimizing Large Volume First Mover Projects by Managing Short and Long Term Security and Liabilities

Prepared By: **Michael L. Godec,** Vice President <u>mgodec@adv-res.com</u> Arlington, VA USA

September 15, 2021

Environmental, Regulatory and Policy Issues

Successful implementation of CCS/CCUS will require addressing critical environmental regulatory issues and keeping abreast of emerging policy issues, including:

- Taking advantage of 45Q tax credits
- Demonstrating "secure geologic storage"
 - EPA reporting requirements for storage with CO_2 EOR.
 - International (ISO) standards for establishing secure storage sites
- Obtaining storage site construction, injection, and operating permits
- Complying with Class II and/or Class VI injection and post-injection monitoring requirements

Main U.S. Efforts to Incentivize CCS

- Bipartisan Budget Act of 2018 (BBA)
 - Enhancements to IRC Section 45Q
- California Low Carbon Fuel Standards (LCFS)
- State Incentives/Regulatory Frameworks

CCUS Economics 101 – 45Q Example

IRS Section 45Q -- Highlights

Bipartisan Budget Act of 2018

- New facilities need to "**break ground**" by EOY 2025.
- Credit goes to the <u>owner of the capture equipment</u> but allows transfer of qualified credits.
- \$50/mt for geologic storage and \$35/mt for EOR (reaches maximum value in 2026, increasing thereafter with inflation).
- Capture > 500,000 metric tons CO₂/year for electric generating units; > 100,000 metric tons CO₂/year for other industrial facilities.
- Available for **12 years** from date carbon capture equipment is placed in service.

Issues of Concern with 45Q

- Is 12 years of credits enough for commercial viability?
- What types of business models will involve?
- What will be the role and appetite for financial institutions and tax equity players?
- Is the 12/31/2025 deadline achievable for large, complex (e.g., power generation or direct air capture) projects?
- What impact will CCS have on electricity dispatch? Can 45Q enhance dispatch by lowering marginal costs?
- What if the tax credits are converted to "direct pay"?

Possible Federal Enhancements to Section 45Q Tax Credits -- Highlights

Carbon Capture, Utilization, and Storage Tax Credit Amendments Acts

- Extends the commence construction window to the end of 2030.
- Provides a direct pay option, rather than just a tax credit.
- Increases the 45Q credit value (different bills have different value targets)
 - To as much as \$120 per metric ton for saline formations (some propose smaller increases).
 - To as much as \$75 per ton for storage in oil and gas fields (some propose smaller increases).
- Amends other conflicting and disincentivizing provisions of the tax code.

SCALE Act

 Establishes the CO₂ Infrastructure Finance and Innovation Act (CIFIA) program to finance shared CO₂ transport infrastructure.

American Jobs Plan

- Establish ten "pioneer" facilities that demonstrate carbon capture retrofits; \$15 billion in demonstration projects, including, but not exclusive to, CCS projects.
- Extends the commence construction window to the end of 2030.

Several bills also lower the threshold capture amount for various categories of facilities.

What Additional Support can States Provide?

- Clear and supportive state regulatory policies
- Clear rules for long term storage
 - CO₂ storage trust funds; rules for CO₂/pore space ownership, responsibility, and liability
- CO₂ pipelines common carrier/eminent domain
- Financial incentives for carbon capture
 - Financial assistance, off-take priority, cost recovery, eligibility under "clean energy" standards, assumption of long-term liability
- Tax incentives/optimization
 - Additional tax credits for CO₂-EOR + storage, tax exemptions for "pollution control equipment" associated with CO₂ capture

Steps in Pursuit of CCS with 45Q Credits

Achieving IRS certification for Section 45Q credits is the LAST step in a multi-step process. Working backwards:

- Getting the 45Q credits simply involves claiming the credits on IRS Form 8933.
- Entities claiming credits need to demonstrate that the CO₂ is injected into "secure geological storage."
 - Several methods are available for this demonstration.
- The MRV Plan generally presumes that permit applications for all injection wells have already been approved or have at least been submitted for approval.
 - This is not a trivial process.

Establishing "Secure Geologic Storage"

- EPA Greenhouse Gas Reporting Program (GHGRP) Subpart RR and federal/state Underground Injection Control (UIC) program rules are the status quo.
- For storage with EOR, accepted alternative to Subpart RR is the use of standards for EOR published by the International Standards Organization (ISO)
- Subpart RR:
 - Accounting framework only no authority for containment assurance.
 - For CO₂-EOR, not required to report under Subpart RR unless operator chooses to opt-in
 - To get 45Q credits for EOR, operator must opt in.
 - Facilities reporting under Subpart RR must have an EPA-approved, site-specific monitoring, reporting and verification (MRV) plan.

CO₂-EOR Technology: A Closed-Loop System

Alternative Approaches for Establishing "Secure Geologic Storage" with CO₂-EOR

- Subpart RR of the EPA Greenhouse Gas Reporting Program (GHGRP)
- International Standards Organization (ISO) 27916: 2019
- The California Low Carbon Fuel Standard (LCFS) and associated CCS Protocol.

Subpart RR: Geologic Sequestration of Carbon Dioxide

- Accounting framework only to report CO₂ sequestered on an annual basis – no authority for containment assurance.
- EOR facilities not required to report under Subpart RR unless operator chooses to opt-in, or wells are permitted as Class VI
 - To get 45Q credits for EOR, operator must opt in.
- Facilities reporting under Subpart RR must have an EPA-approved site-specific monitoring, reporting and verification (MRV) plan.

Major Elements of a Subpart RR MRV Plan

- Delineation of active and maximum monitoring areas
- Identification of potential surface leakage pathways for CO₂
- Strategy for detecting and quantifying surface leakage of CO₂
- Strategy for establishing the baseline for monitoring CO₂ leakage
- Site-specific variables that will be used for estimating leakage

Once the facility has an approved MRV plan, the following are required to be reported to EPA annually:

- Amount of CO₂ received, data used to calculate the amount, and the source of the received CO₂.
- Mass balance equation inputs used to calculate the amount of CO₂ sequestered.

ISO 27916-2019 --- Alternative to Subpart RR

ISO 27916-2019 addresses three principal issues:

- Safe, long-term containment of CO₂ stored in association with CO₂-EOR.
- Periodic / cumulative quantification of associated storage.
- Documentation provisions for operational management, containment assurance, quantification of storage, and termination.

Some stakeholders claim that ISO 27916-2019 addresses concerns with Subpart RR.

INTERNATIONAL STANDARD	ISO 27916
	First edition 2019-01
Carbon dioxide capture, tu and geological storage — dioxide storage using enh recovery (CO ₂ -EOR)	ransportation Carbon anced oil
Captage, transport et stockage géologique du Stockage du dioxyde de carbone au moyen de du pétrole (RAP-CO2)	dioxyde de carbone — la récupération assistée
	Reference number ISO 27916:2019(E)
150	

California Low Carbon Fuels Standard (LCFS)/CCS Protocol

Along with minimum site selection criteria, project must satisfy expansive set ^{co, source} of requirements throughout its lifetime:

- Maintaining, updating and submitting changes to plans as necessary
- Constructing wells in accordance with specified standards
- Undertaking monitoring to ensure site integrity is maintained; no leakage
- Plugging wells that protect against leaks
- Monitoring the site for at least 100 years pos injection.

Requirements remain until site closure has been granted.

Highlights of Similarities and Differences

- Mechanisms apply to different operational/storage situations:
 - Subpart RR applies to saline storage & CO₂-EOR projects that "opt in"
 - ISO 27916 only applies to CO_2 -EOR
 - LCFS/ Protocol applies to saline storage and CO₂-EOR
- Responsible regulatory authorities vary:
 - Subpart RR a reporting requirement, EPA enforcement applies only to reporting, and not containment assurance.
 - ISO 27916 is voluntary, cannot conflict with or override existing requirements or law; can only become binding if codified.
 - LCFS/CCS Protocol applies to anyone seeking credits under the LCFS, regardless of whether project is in California.

Highlights of Similarities and Differences

- Subpart RR and ISO 27916 acknowledge applicability of existing regulatory programs.
 - CCS Protocol regulates these activities explicitly; and those seeking credits under the LCFS must comply even if other jurisdictions also regulate the same activities.

Subpart RR/ISO 27916 are primarily performance-based.

- While LCFS/CCS Protocol often provides an extensive list of things that MUST be done.
- No requirements are specified for post-injection site care and site closure under Subpart RR and ISO 27916; assumed addressed under other compliance requirements.
 - Under LCFS/CCS Protocol, post monitoring must be at least 100 years after injection has been completed.

U.S. Regulation of CO₂ Injection/Storage

- From 20 years' worth of R&D, a significant foundation of experience regarding CO₂ storage has been established.
- In 2010, U.S. EPA promulgated Underground Injection Control (UIC) well (Class VI) requirements for geologic storage of CO₂.
 - All Class VI CO₂ storage wells permitted to date associated with R&D projects; rule originally not intended to apply to R&D projects.
 - Most of the commercial-scale CO_2 storage wells permitted to date and in operation are Class II wells associated with CO_2 -EOR.
- EPA guidance confirms that CO₂-EOR via Class II wells can result in stored CO₂; conversion to Class VI is not required for assuring storage.

Permitting Considerations – Class II vs. Class VI

- Class VI permits for EOR operations are substantially more complicated that Class II permits
- Permitting Class II wells for EOR operations can be done more expeditiously than Class VI for geologic storage
- However, economics may be easier to predict for Class VI
- Some financial firms prefer supporting Class VI-based projects to promote "sustainability"

	Enhanced Oil Recovery	Geologic Sequestration
EPA Well Class	Class II	Class VI
Purpose	Injection for purposes of enhancing oil recovery	Injecting CO ₂ into geologic formations for permanent storage
No. of Current Permitted Wells	~ 140,000	2
Vol. of CO ₂ Injected	~ 70 million tonnes per year	~ 1.3 million tonnes per year
States with Regulatory Primacy	40	2
Approx. Timeline for Permitting	1-3 months	1- 3 years???

U.S. Regulatory Experience – Class VI

- To date, the timeline for obtaining Class VI permit approval has been long.
- Post injection site care (PISC) required until CO₂ plume is stabilized (regulations have 50-year "default").
- EPA still unclear on how to ensure financial responsibility.
- Process for allowing states to acquire primacy for Class VI well permitting has been slow.
- Need clarity on possible conversion from Class II to Class VI
- Greater Class VI regulatory certainty may be necessary to encourage large numbers of new Class VI projects.
 - However, this certainty may only come with "testing the system."

What Class VI Injection Permits Must Demonstrate

- Injection zone(s) of sufficient areal extent, thickness, porosity, permeability, and TDS concentration < 10,000 mg/l to receive the total anticipated volume of CO₂.
- Confining zone(s) free of transmissive faults/fractures and of sufficient areal extent and integrity to contain the injected CO₂ stream and displaced formation fluids and allow injection at proposed maximum pressures and volumes without initiating or propagating fractures in the confining zone(s).
- Identification of all underground sources of drinking water (USDW) in which the concentration of TDS is less than 10,000 mg/l to ensure that CO₂ from the injection zone will not migrate into any USDW.
- Maintenance of pore pressures in the injection zone at less than 90% of the fracture gradient.

Keys Parts of the Class VI Permit Application

- Summary of Operating and Reporting Requirements
- Area of Review and Corrective Action Plan
- Testing and Monitoring Plan
- Well Plugging Plan
- Post Injection Site Care and Site Closure Plan
- Emergency and Remedial Response Plan
- Well Construction Details
- Financial Assurance Demonstration
- Stimulation Plan

Challenges Faced by Regulators

- Limited developer experience in permitting Class VI wells applies also to regulatory agencies.
- Concerns exist that regulatory agency personnel much increase (and both the state and federal level), to handle the anticipated number of permit applications that could be forthcoming.
- Efforts being pursued in Congress and some states to increase staffing to meet this demand.
- Additionally, efforts are underway to develop training resources to give agency staff the tools and knowledge required.

Concluding Thoughts

- Recent incentives 45Q, the CA LCFS, and discussions on regional deployment initiatives – has created a new "buzz" associated with CCS/CCUS in the US:
 - Coupled with continued strong investment in RD&D
- However, substantial challenges remain:
 - Need for clarity on 45Q implementation early projects will be key indicator.
 - Lack of a track record for expediting approval for CO₂ storage projects.
 - Uncertainty/anxiety concerning the requirements for "certifying and quantifying" volumes stored
 - Are the timelines for commencing construction and receiving credits enough?
- Nonetheless, if these challenges can be overcome, a major kick-start of CCS deployment could result.

Michael L. Godec, Vice President Advanced Resources International mgodec@adv-res.com Arlington, VA USA

Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

26 | JAF2021_035.PPT | September 13, 2021 | www.adv-res.com