



US Energy Association, Washington DC, 18 December 2014

**Richard Jackson** 

Geofirma Engineering Ltd of Ottawa Adjunct Professor, Dept of Earth & Environmental Sciences, University of Waterloo

Maurice Dusseault

Professor of Geological Engineering, Dept of Earth & Environmental Sciences, University of Waterloo

### North American DGRs







**Deep Geological Repositories** 





### Example of DGRs

- Waste Isolation Pilot Plant, Carlsbad NM
- Yucca Mtn Project
  Olkiluoto, Finland
- → Forsmark, Sweden





# Shallow Geological Repositories Geofirma





Low/Intermediate Level Waste
 WCS Andrews County, Texas
 DOE facilities

# **Conceptually Similar DGRs**





### The Michigan Basin

















DGRs rely on low-permeability rocks to prevent groundwater flow and ensure radionuclide transport is only by *diffusion* 





- But how to monitor for contaminants potentially migrating
  - *from great depth* → *the ground surface*?
  - 2) through uncertain pathways?
- ♦ → Multi-depth monitoring wells

### Multi-depth MWs





### Multi-depth MWs







Monitoring of *discrete* intervals allows us to build continuous profiles of information

### In-situ characterization







### At the Bruce DGR







### Deep Monitoring for CO<sub>2</sub> Sequestration







Beware of (a) producing oil & gas wells and (b) legacy wells
 Continuous monitoring and data transmission from monitoring wells

#### Unconventional Gas in North America







#### Canadian Shale Gas Plays

ł

|                                 | Geological Formation                                               |                                                              |                                                              |                                                                                      |                                  |
|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|
|                                 | Horn River                                                         | Montney                                                      | Colorado                                                     | Utica                                                                                | Frederick Brook/<br>Horton Bluff |
| Geographical<br>Location        | Northeast<br>B.C. (extends<br>into YT and<br>N.W.T.)<br>Updated 20 | Northwest<br>Alta.,<br>northeast<br>B.C.<br>013 to a huge va | Southern and<br>central Alta.;<br>southern<br>Sask.<br>alue: | South<br>shore of<br>St. Lawrence<br>River<br>between<br>Montréal and<br>Ouébec City | Southern N.B.;<br>central N.S.   |
| Potential Gas<br>in Place (Tcf) | 144–600+                                                           | 445 Tcf                                                      | >100                                                         | >120                                                                                 | > 130                            |
| Depth of<br>Formation (m)       | 2,500–3,000                                                        | 1,700–4,000                                                  | 300                                                          | 500–3,300                                                                            | 1,120–2,000+                     |
| Shale<br>Thickness (m)          | 150                                                                | Up to 300                                                    | 17–350                                                       | 90–300                                                                               | 150+                             |
| Well Cost<br>(M \$)             | 7–10<br>(horizontal<br>wells)                                      | 5–8<br>(horizontal<br>wells)                                 | 0.35<br>(vertical<br>wells)                                  | 5–9<br>(horizontal<br>wells)                                                         | unknown                          |

Deep Monitoring for Shale Gas Extraction Geofirma





With shale gas and tight-gas sands, our principal concerns are:

Leaky wellbores;
 Nearby stand-off wells;
 Nearby legacy wells;

#### Annular Pathways in Cement Sheaths







Figure 3: Cement sheath failure and resulting cracks developed from pressure cycling.<sup>3</sup>

Figure 4: Incomplete displacement of drilling mud and resulting cement and drilling fluid channels. Over time, the gels in the drilling fluid well shrink, forming a gas flow path in the annulus.<sup>3</sup>

Watson, T., 2004, CIMM Petsoc, paper 2004-297, Calgary AB

In the wellbore annulus, pulsing may be constrained by gas accumulation rates

(a)







- a. Bubble-to-slug transition occurs when gas volume fraction ~0.25
- b. Slug migration depicted is for cylindrical tubes of <100 mm
- c. Slug ascent *periodic* depending on coalescence times and gas flux from formation
- d. Displacement pressure of the slug:

 $\boldsymbol{P}_{d} = \boldsymbol{z} \cdot \boldsymbol{g} \cdot (\boldsymbol{\rho}_{w} - \boldsymbol{\rho}_{g})$ 

 $\begin{array}{l} z = ht \mbox{ of gas column} \\ g = gravitational \mbox{ constant} \\ \rho_w = \mbox{ density of brine} \\ \rho_g = \mbox{ density of gas} \end{array}$ 

# Potential Groundwater Contamination Pathways



### Innisfail, Alberta





Midway Energy Ltd. Hydraulic Fracturing Incident: Interwellbore Communication January 13, 2012

ERCB Investigation Report Red Deer Field Centre

December 12, 2012





- Maximum distance of IWB (*pressure kicks*) in British Columbia (BC OGC): 2.6 miles
- Undetected fault zones likely involved
- Distance between wellbores in Alberta:
  - Closest IWB: 90 ft
  - Furthest IWB: 1.5 miles
  - Average IWB: 1164 ft

## **MSHF** Stimulation







# Happens in Pennsylvania too!







#### 'Marcellus well'

Courtesy of Pete Penoyer, US NPS, Fort Collins CO

It is US practice to 'shut-in' valves at the wellhead during production

This may cause pressure buildup beneath the surface casing –

Gas daylights *up to* 2100 ft away!!



- Why the long migration distances?
   *Rock fracture networks are complex Buoyant gases can migrate by discrete fractures at depth*
- Reinforces the need for multi-level monitoring

#### Hutchinson, Kansas, January 2001







The fire dept reported at the end of the day that the fires would not burn out



#### Geyers noted from abandoned brine wells







2

#### KGS' working hypothesis



- 1) Gas leak at storage cavern outside town
- 2) Gas migrates 14 km to downtown Hutchinson
- 3) Gas vents via some of 160 abandoned brine wells



### Identification of gas-bearing horizon



#### Cross Section Showing Hutchinson Salt Member in Relation to other Geologic Strata



APEGA, 24-25 April 2014

#### Gas migration pathways are complex







Gas migrated at ~650 psi (4.4 MPa) in three thin (<1m) beds of dolomicrite up the crest of an anticline in joints in the dolomicrite.

#### Status of understanding 2 yrs after the catastrophe







**Conclusions:** 

Identification of gas migration pathways will be exceptionally difficult in fractured rock

Monitoring will need to focus on discrete intervals

Natural Gas Explosions in Hutchinson, Kansas: Geologic Factors

*Lynn Watney, Alan Byrnes, Saibal Bhattacharya, Susan Nissen, and Allyson Anderson Kansas Geological Survey Lawrence, KS 66047* 

North-Central GSA - March 24, 2003

First attempt at groundwater monitoring during MSHF –







### Update on Moshannon Groundwater Monitoring Project

Daniel J. Soeder Office of Research and Development, National Energy Technology Laboratory



## DOE's Moshannon Project



Legend

MonitorStream

Springs



#### Moshannon State Forest site groundwater wells located to capture groundwater flow pathways relative to future well pad location

**MonitorWells** Exact location of groundwater ٠ GasWells monitoring wells determined nhd24kst | pa033 by hydraulic gradient and GiffordRunWatershed street100k | pa033 groundwater flowpaths. Hydrogeology to define flow paths prior to well placement is in progress (complicated) Downgradient wells (3 only, locations flexible) Future shale gas well pad Upgradient well

# DOE's Moshannon Project





#### **Groundwater Monitoring**

- Research Objectives:
  - At least one year of baseline monitoring of groundwater and surface water surrounding a gas lease, including methane gas, pressure changes, major ions, metals, organics, TDS.
  - Baseline will determine flow pathways. Multi-level samplers will enable the measurement of discrete flow paths and provide a greater understanding of the site hydrogeology.
  - Continuous groundwater monitoring during top-hole drilling through aquifer, and during hydraulic fracturing.
  - Post-drilling water quality monitoring for acute or chronic water quality changes due to drilling.
- Configuration:
  - Up-gradient reference well, initially 300 ft deep, open hole completion, equipped with a highly precise methane detector to measure headspace gases. Eventual completion to 1500 ft reaching depth of deepest freshwater.
  - Three down-gradient monitoring wells; nominal depth 300 ft; open hole completions, two equipped with multilevel samplers, the other equipped with continuous electronic monitoring.



