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A Little History and Background...
About My Work

Leaked Brine Various aspects of Reservoir-Scale and

Systems-Level Research on:

Leaked CO,
4

>

* Carbon Dioxide Capture and Geologic
Storage (since 2005)
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A Little History and Background... About My Relevant Work

Various aspects of Reservoir-Scale and
Systems-Level Research on:

Electricity Generation
Turbine Generator

* Carbon Dioxide Capture and Geologic
Storage (since 2005)

Caprock

* Utilization - beneficial use of emplaced
CO, (since 2010)
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Bielicki et al., (2016); Bielicki et al., (2018); Bielicki et al., (2023)




Three Main Utilization Approaches Will Underlie My
Remarks

o . Carbon Dioxide Plume Geothermal (CPG)
Recdhymens 290 circulating emplaced CO, in sedimentary

Turbine G '
urbine e"e_'.af:’.[ basin geothermal resources to extract
geothermal heat.

Caprock
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Bielicki et al., (2023)




Three Main Utilization Approaches Will Underlie My
Remarks

Carbon Dioxide Plume Geothermal (CPG)
circulating emplaced CO, in sedimentary
basin geothermal resources to extract
geothermal heat.

CO, Bulk Energy Storage

using emplaced CO, to store energy (e.g.,
pressure) and later produce stored, often
with brine management as well.

THE OHIO STATE UNIVERSITY Energy Sustainability Research Laboratory

Buscheck et al., (2016)



Three Main Utilization Approaches Will Underlie My

Remarks
Carbon Dioxide Plume Geothermal (CPG)
Greenhouse gas emissions (stylised pathway) CirCUlating emplaced C02 in Sedimenta ry
N Eissions: Non-CO; GHGs basin geothermal resources to extract
Emissions: Fossil CO,
Emissions: Managed land geothe rmal heat.

CDR: Removals on managed land

CDR: Other removals
\\ Net GHG Emissions
N .
N = = Net €O, emissions CO, Bulk Energy Storage
using emplaced CO, to store energy (e.g.,
Gross emissions
Eeee—— pressure) and later produce stored, often
---------- T with brine management as well.

(1) Before net zero ‘ | (2) Net zero CO, or GHG ‘ ‘ (3) Net negative |

2010 2100

Negative Emissions
net removal of CO, from the atmosphere
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Systems-Level Perspective Require Matching CO, Sources with
Prospective Locations for Geologic CO, Storage and Geothermal
Heat Mining

Geospatial Considerations at Regional
Scale:

* U.S. Gulf Coast Region
* Points = Various CO, Sources*

 Tan Shading = Deep Saline Aquifers for
Geologic CO, Storage

*See Jonathan Ogland-Hand’s presentation involving SCO,T and CO,NCORD

THE OHIO STATE UNIVERSITY Energy Sustainability Research Laboratory

Miranda (2023)



The Subsurface is Opaqgue and Reservoir Characteristics
are Uncertain
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Reservoir Uncertainty Affects CPG Cost
and Capacity

* Early estimates™ of CPG Electricity
Generating Capacity in the U.S. Gulf Coast

*See Jonathan Ogland-Hand’s presentation involving SCO,T and CO,NCORD

Energy Sustainability Research Laboratory
Miranda (2023)



Reservoir Uncertainty Affects Desired Pipeline Routes*

Route Deployment Favorability
(% Routes for CPG - % Routes For GCS)

| l |
C-100% 0% 100%
(only deployed for GCS) (only deployed for CPG).

_, *Using SimCCSPRO model
THE OHIO STATE UNIVERSITY Energy Sustainability Research Laboratory

*[e.g., Middleton and Bielicki (2019), Middleton et al. (2020)]; Miranda (2023)




Of Course, We Need to Consider CO, Emissions
Throughout the Lifetime and Supply Chain
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Of Course, We Need to Consider CO, Emissions
Throughout the Lifetime and Supply Chain
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Location, Location, Location: Reservoir Parameters and Geothermal Resource Matter!!!

Liu et al., (2024)
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There is Potential for Negative Emissions

U.S. Gulf Coast
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life cycle emissions of CPG systems when combined with one of the six CO, feedstocks

Characteristics of CO, Sources Matter As Well!!!
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Ambitious Scaling: Possibility to Provide Gigatonne
Reductions in CO, Emissions and Gigawatts of Power
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Major Gaps in Knowledge for Sedimentary Basin CO,
Geothermal and CO,-Bulk Energy Storage

1. What are the impacts on (multi-phase) fluid and energy IScience @ CePross
flow due to geological heterogeneity at scales ranging from o o . s seclogic CO storsge with
hyd rostratigra pth l_aye ring to the pore SCal.e and hOW do sedimentary basin geo%ermal power generation

Jeffrey M. Bielicki,’-* Martina Leveni, " Jeremizh X. Johrson,*" and Brian R. Ellis*

these impacts affect sedimentary basin CO,-geothermal s

Achleving ambitious greenhouse gas mitigation targets will require technological

f) ° ° °]° advances and cost reductions in dispatchable carbonfree power generation sour-
an - an the reservoir variability be leveraged to sy
2 . variable wind and solar power. Several other sectors may be difficult to decar-

benize and a net-zero or netnegative carbon economy may require the deploy-
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tial for using geologiclly stored CO,; for bulk enargy storage which could provide

valuable time-shifting and otherservices to the pow er grid. We explore the prom-
Ise amd challenges of these technologles, idemtify key research gaps, and offera

3. What are the best deployment and operational strategies gl b e gy R

achleving broad deployment.

in light of decreasing sources of CO, and increasing T ——
penetrations of variable renewable energy on the grid?
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Major Gaps in Knowledge for Sedimentary Basin CO,-
Geothermal and CO,-Bulk Energy Storage

5. What levels of incentives are necessary to encourage the
growth of this industry and what conditions on these
incentives would ensure the greatest levels of
decarbonization?

6. Whatinfluences public support or opposition to the use of
CO, for producing geothermal energy and how might this
affect the technology deployment?

7. What are the technical and legal issues surrounding
large-scale implementation of these technologies such as
pressure or groundwater level changes extending over
multiple pore-space owners across the whole basin?

THE OHIO STATE UNIVERSITY
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The promise of coupling geologic CO; storage with
sedimentary basin geothermal power generation

Jeffrey M. Bielicki,'* Martina Leveni, " Jeremizh X. Johrson,®” and Brian R. Ellis*

SUMMARY

Achleving ambitious greenhouse gas mitigation targets will require technological
advances and cost reductions in dispatchable carbonfree power generation sour-
ces that can provide load following flexibility to integrate high penetrations of
variable wind and solar power. Several other sectors may be difficult to decar-
benize and a net-zero or netnegative carbon economy may require the deploy-
ment of geclogic carbon dioxide (CO:) storage. Utllizing CO; as a working fluid
for geothermal energy production and energy storage ean achleve both goals:
Isalating CO, from the stmosphere and providing valuable power system ser-
vices to enable high penetrations of variable carbonfree electridty production.
The use of CO; 8352 working fluid facllitates access to low-grade heatin sedimen-
tary basins, which are widely available and could allow for strategie dting near
CO,; sources or where power system flexbility is needed. In this perspective
plece, we summarize the state of knowledge for sedimentary basin COs-
geothermal, sometimes referred to as CO; plume geothermal, and explore how
it could support decarbonization of the energy sector. We also presentthe poten-
tial for using geologiclly stored CO,; for bulk enargy storage which could provide
valuable time-shifting and otherservices to the pow er grid. We explore the prom-
Ise amd challenges of these technologles, idemtify key research gaps, and offera
critical appraisal of the role that policy for a technology at the intersection of
renewable emergy, emergy storage, and geologlc €O, storage may play in
achleving broad deployment.

THERE IS A NEED FOR DISPATCHABLE CAREON FREE POWER AND GEOLOGIC CO,
STORAGE TO ACHIEVE DEEP DECARBONIZATION
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n greanhouss gas eMIEans regue the pavwar sectar 1o drstaally meduca COp ams sens whils smuta-
neously abacrifying athar sectors, suchas transparation andhaating (Kray ot al, 2014, Wilkiams at al, 2012
National Acadam an t al., 2018). Dacarbonization of
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Pooll, and diurnal patiams of solar ganaration balanced by incrazsingimperts and nawrl gas ganaraton
during tha off paak hours (Calfomia Indapandant System Oparainr]. In both regions, tham am tima nter-
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Major Takeaways From These Remarks

Location matters

Reservoir characteristics matter
Sources of CO, matter
Non-technical issues matter

The technology has promise, but also obstacles:
we still have a lot to learn.

New and different understanding arises from the
research, development, demonstration,
deployment, and diffusion

THE OHIO STATE UNIVERSITY Energy Sustainability Research Laboratory
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