CARBON UTILIZATION – A VITAL AND EFFECTIVE PATHWAY FOR DECARBONIZATION

Jeffrey Bobeck

January 28, 2020

C2ES.ORG

C2ES Report on Carbon Utilization

- Four high-level workshops of **Carbon Capture Coalition** participants
- Original research contributed by Cogentiv
 Solutions
- Build upon past work of the National Academy of Sciences, Global CO₂ Initiative
- More than 20 interviews with carbon utilization developers and experts
- Goal: **Identify policy options** that will support a path forward for carbon utilization

CARBON UTILIZATION— A VITAL AND EFFECTIVE PATHWAY FOR DECARBONIZATION

Summary Report

by

Jeffrey Bobeck Janet Peace Fatima Maria Ahmad *Center for Climate and Energy Solutions*

Ron Munson Cogentiv Solutions

August 2019

Carbon Utilization Sectors

Construction Materials

- · Cement and concrete
- Asphalt
- Aggregate
- Timber/super hardwood

Fuel

- Synthetic (methanol, butanol, natural gas, syngas, etc.)
- · Micro-algae fuel
- · Macro-algae fuel

New materials

- · Carbon fiber
- Carbon nanotubes and fullerenes
- Graphene

Industrial gas & fluids

- · Enhanced oil recovery
- Enhanced coal bed methane recovery
- · Enhanced water recovery
- Semiconductor fabrication
- Power cycles

Plastics

- · Polyurethane foams
- · Polycarbonate (glass replacement)
- Acrylonitrile butadiene styrene
- Many more

Agriculture & food

- Algae-based food or animal feed
- Microbial fertilizer
- Biochar, bio-pesticides, bio-cosmetics

Chemicals

- Preservatives (formic acid)
- Medicinal
- Antifreeze (ethylene glycol)
- Carbon black
- Many more

Carbon Utilization's Potential Contribution to Decarbonization

4

Accelerating development and deployment of CO₂ utilization would provide critical pathways for decarbonization. Those include:

- **1.** *Decarbonization of certain industrial sectors*. While many sources of carbon emissions can be solved through traditional carbon capture, certain industrial sectors are harder to decarbonize.
- **2.** Decarbonization in locations where more options are needed. Development of carbon capture in some geographic locations may be constrained by social issues or land use restrictions.
- **3.** *Increased development for broader carbon capture technologies.* Inclusion of CCU technology development within federal DOE R&D will help drive carbon capture innovation generally, where CCU developments may have technology transfer potential beyond their original scope.

An Idea

5

2030 Market Size Projection and CO₂ Mitigation Potential

6

Policy Imperatives for Accelerating CCU by 2030

Immediate Actions (2019)

- Publish IRS guidance for implementation of 45Q
- Pass the USE IT Act
- Reauthorize, reform and increase funding for DOE's
 Fossil R&D program
- Include CO₂ pipelines in national infrastructure legislation

Mid-term Actions (2019-2022)

- Lower the **45Q eligibility threshold** and extend the 2024 "commence construction" deadline
- Increase federal R&D spending to a level to meet research needs of the 2018 NAS Report
- Permit the funding of **more and larger pilot projects** (\$5 million-10 million range), ensure follow-through to commercialization
- Create low-carbon procurement preferences
- Update codes and standards to permit or specify low-carbon products

- Targeted policies alone cannot fully realize carbon utilization's potential.
- Adoption of broad-based policies and market preferences favoring decarbonization is imperative. (carbon pricing, performance standards)
- **Timing** is everything
 - Carbon use markets need to reach a stage of **commercialization by 2030** if longer-term GHG impact is to be possible; and
 - Near-term actions are required if that 2030 goal is to be met.

NPC Study: Meeting the Dual Challenge

National Petroleum Council CCUS Study

December 2019

- Requested by the U.S. Secretary of Energy
- "Define the potential pathways for integrating CCUS at scale into the energy and industrial marketplace."
- More than 300 contributors over two years

https://dualchallenge.npc.org/

Meeting the Dual Challenge:

A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage

NPC Study: Defining CCUS "Deployment at Scale"

Will mean:

- Moving from 25 to 500 Million tonnes per annum of CCUS capacity
- Infrastructure buildout equivalent of 13 million barrels per day capacity
- Incremental investment of \$680 billion
- Support for 236,000 U.S. jobs and GDP of \$21 billion annually

Will require:

- Improved policies, incentives, regulations and legislation
- Broad-based innovation and technology development
- Strong collaboration between industry and government
- Increased understanding and confidence in CCUS

NPC Study: Cost Assessment and Phases of Deployment

C2ES

11

NPC Study: R&D Needs \$15 Billion Over 10 Years

Technology	R&D (including pilot programs)	Demonstrations	Total	10-Year Total
Capture (including negative emissions technologies)	\$500 million/year	\$500 million/year	\$1.0 billion/year (over 10 years)	\$10 billion
Geologic Storage	\$400 million/year		\$400 million/year (over 10 years)	\$4 billion
Nonconventional Storage (including EOR)	\$50 million/year		\$50 million/year (over 10 years)	\$500 million
Use	\$50million/year		\$50 million/year (over 10 years)	\$500 million
Total	\$1.0 billion/year	\$500 million/year	\$1.5 billion/year	\$15 billion

CARBON UTILIZATION – A VITAL AND EFFECTIVE PATHWAY FOR DECARBONIZATION

Jeffrey Bobeck

January 28, 2020

C2ES.ORG