T&D Grid Modernization

A Brief Primer on Modernization Activities from Around the Globe

Jeff Smith, Senior Program Manager T&D Operations & Planning, EPRI jsmith@epri.com

USAID/USEA Webinar Series on Grid Modernization

EPRI Overview

EPRI's Mission: Advancing *safe*, *reliable*, *affordable* and *environmentally responsible* electricity for society through global collaboration, thought leadership and science & technology innovation

Thought Leadership

Industry Expertise

Collaborative Model

Grid Modernization

Utilities around the world are developing strategies to modernize their grids

Key Drivers

Decarbonization

Climate change

Extreme weather

Digitalization

Aging infrastructure

Common Goals

Safety

Flexibility

Reliability

Efficiency

Resiliency

Affordability

Sustainability

Grid Modernization Strategies

Grid Infrastructure

Asset life cycle management

Supporting Technology

Telecom, IT systems, and cyber/physical security

Digitalization

Information, data, and modeling

Operations

Systems, data, controls, and automation

Planning

Methods and tools

Workforce

New tools and skills

Grid modernization spans the industry, from infrastructure to technologies, data, processes, practices, and people.

Grid Infrastructure

Improved safety and resilience are major drivers for grid infrastructure modernization

- Advanced monitoring & sensing for asset health & maintenance
- Advanced overhead structures for reduced environmental impact and improved restoration
- Aerial imagery (UAV) for routine and emergency/disaster inspections
- Voltage Upgrading for meeting load growth requirements

EPRI/Utility Example: Reducing storm restoration using super structure

Information & Communication Technologies

Scalable, Secure, and interoperable Information & Communication Systems are essential to Operation of the Integrated Grid

- Telecommunications Infrastructure
- Cyber Security Assessment and Planning
- Enterprise Architecture and Integration

Digitalization

Providing actionable information to improve situational awareness and maximize system performance

- Analog to digital
- GIS
- AMI/SCADA/D-SCADA

- Data management
- Network model management
- Artificial Intelligence

Recent Webinar Series on the Digital Grid

Modernizing Operations

Ensuring operational reliability and security by maximizing use of existing assets while leveraging new resources and technologies

Automation and Control

- Distribution automation
- Distribution Management Systems (DMS)
- DER Management Systems (DERMS)
- Adaptive protection schemes
- Wide-area damping controls

T&D Control Centers

- Pandemic resilient facilities
- Optimized videowall or display designs
- Paper-free and manual task automation
- Improved, modern, modular IT architectures

Situational Awareness

- Improved monitoring and sensing
- Standardized HMI designs and user interfaces
- Intelligent alarm processing
- Look-Ahead functionality
- Response & Restoration
 - Fault location, isolation, and restoration
 - Blackstart with renewables
 - Synthetic inertia
- Market Operations and Design
 - New resources (hybrid, storage, DER aggregation)
 - Supply resilience

Modernizing Planning

Focusing on new challenges to ensure safe and reliable services for all customers

- Processes and Criteria
 - Planning criteria
 - Reserve requirements
 - DER interconnection processes
- Tools & Analytics
 - Forecasting
 - Hosting capacity
 - Non-wires alternatives
 - Resource adequacy & flexibility
 - Risk-based analysis
- Grid codes and requirements
 - Voltage/var control
 - Frequency control
 - Inertia response

Addressing new challenges

- System resiliency
 - for high-impact, low-frequency events
- Integrated planning
 - Generation, transmission, distribution
 - Gas, electric, water, transport

Workforce

Equipping the workforce of the future with the skills and resources to meet the challenges of today and tomorrow

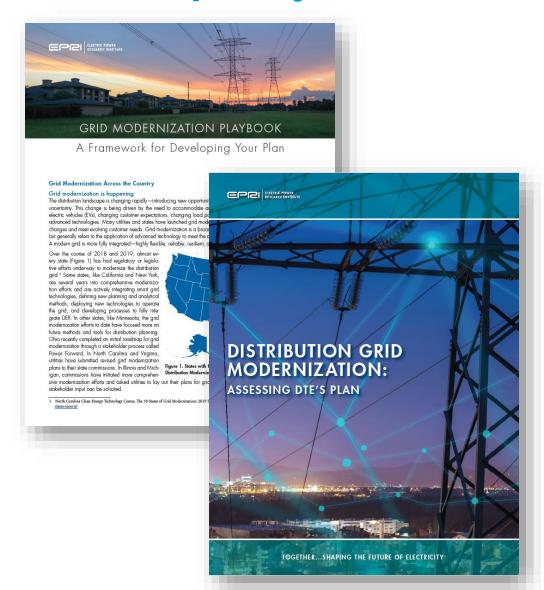
- Expanding roles and responsibilities require new skillsets
- Continued and evolving workforce training is essential to acquire and retain top talent

Starting the Grid Modernization Journey with a Roadmap

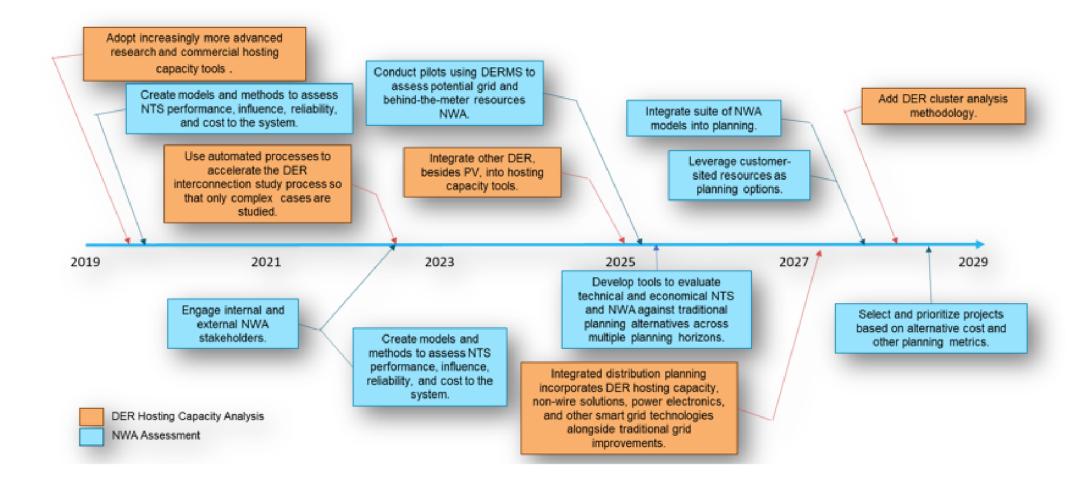
Why are roadmaps important?

- Structured process to map strategy to a modernization plan
- Defines overarching objectives and new capabilities needed
- Describes where a utility is versus where it wants to be
- Alignment with industry peers
- Defines a logical pathway for modernization – new tools, processes, systems, etc.

Roadmaps help define "no regrets" strategies for modernization, managing cost and risk, and providing customer value.


Recent Grid Modernization Roadmap Projects

Strategic Roadmaps


- Hawaiian Electric
- Southern Company
- Xcel Energy
- CPS Energy (In progress)
- Seattle City Light (In progress)
- TVA (In progress)

Roadmap Assessments

- DTE Energy
- Oklahoma Gas & Electric
- Salt River Project
- Hydro Quebec
- Consumers Energy (In progress)
- Manitoba Hydro (In progress)

Example Roadmap

