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Background

Emissions of “traditional” air pollutants (criteria air pollutants), amines and amine byproducts during
carbon capture may have an adverse impacts on human health and the environment.

— Are they significant compared to current air quality impacts?
— How do predicted concentrations compare to levels of concern?

Emissions and Chemistry
— Traditional emissions (NOx, SO, ...)

— Direct emissions of amines and byproducts (nitrosamines and nitramines) formed within the carbon capture
system

Chemistry

— Formation of ozone and fine particulate matter

— Formation of harmful pollutants from the atmospheric chemistry of emitted amines:
= Nitrosamines and nitramines
= |socyanic acid (HNCO)

Modeling atmospheric impacts of these emissions requires the use of dispersion models that can handle
complex atmospheric chemistry
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Notes

= Although this presentation focuses on amine chemistry, it is important to note that itis
critical to continue to model the traditional pollutants

= |t is also critical to have a representation of the chemical composition of the background
onto which the emissions from carbon capture systems are released
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Atmospheric Chemistry of Amines

= Amines react in the gas-phase with OH
radical and other oxidants
— ldentity and amounts of products formed
depend on NOx concentration

— Nitrosamines and nitramines tend to form
with high NOx

— Isocyanic acid tends to form with low NOx

— Nitrosamines can photolyze back to the amino
radical

= Amines form particles with sulfuric acid
and nitric acid (a potential sink for
amines)

= Some amine reaction products can form
secondary organic aerosols (SOA)
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OH Reaction Scheme for Primary (1°) Amines
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Gas and Aerosol Chemistry Interact to Change Amine
Degradation Products

Downwind
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Amines of Interest

“ koy (Rate constant for OH reaction), cm® molecule! st

Monoethanolamine (MEA) 441x101"t0(9.2+1.1)x 10

Dimethylethanolamine (DMEA) (4.7+1.2)x10 ' to (9.0 £ 2.0) x 1011

Monomethylethanolamine (MMEA) (8.51 + 0.65) x 101! (T/298)(0.79:0.22)

2-Amino-2-methylpropanol (AMP) (2.8+0.5)x 10! to 5.2 x 10712 x exp (505/T)

Piperazine (PZ) 1.3x 10 10t0 (2.8 £0.6) x 10710
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Examples of Previous MEA Modeling Studies

= Box Models:

— Karl, M., Dye, C., Schmidbauer, N., Wisthaler, A., Mikoviny, T., D'Anna, B., et al. (2012). Study of OH-initiated degradation
of 2-aminoethanol. Atmos. Chem. Phys., 12(4), 1881-1901.

— Onel, L., Blitz, M. A,, Breen, J., Rickard, A. R., & Seakins, P. W. (2015). Branching ratios for the reactions of OH with
ethanol amines used in carbon capture and the potential impact on carcinogen formation in the emission plume from a
carbon capture plant. [10.1039/C5CP04083C]. Physical Chemistry Chemical Physics, 17(38), 25342-25353.

= Gaussian Dispersion Model:

-~ Manzoor, S., Korre, A., Durucan, S., & Simperler, A. (2014). Atmospheric Chemistry Modelling of Amine Emissions from
Post Combustion CO, Capture Technology. Energy Procedia, 63, 822-829.

= Eulerian Grid Models:

- Karl, M., Castell, N., Simpson, D., Solberg, S., Starrfelt, J., Svendby, T., Walker, S.-E., and Wright, R. F. (2014). Uncertainties
in assessing the environmental impact of amine emissions from a CO, capture plant, Atmos. Chem. Phys., 14, 8533—-8557.

- Karl, M., Svendby, T., Walker, S. E., Velken, A. S., Castell, N., & Solberg, S. (2015). Modelling atmospheric oxidation of 2-
aminoethanol (MEA) emitted from post-combustion capture using WRF—Chem. Science of The Total Environment, 527-

528, 185-202.
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Dispersion Models Considered for this Study

Steady-State Gaussian Models (e.g., EPA AERMOD)

Non-Steady-State Puff Model with Chemistry (SCICHEM)

Constant and horizontally homogeneous meteorological
conditions for a modeling interval (typically 1 hour)

Straight line trajectories for a modeling interval

Simplified dispersion treatment

Generally single-pollutant models (no chemistry). For
Gaussian models that include some chemical reactions,
the chemistry terms are parameterized and reduced to
first-order (linear) chemistry

Not suitable for distances > 50 km

Computationally economical with minimal resource
requirements

3-D time varying meteorology

More realistic plume behavior with 3-D puffs traveling in
different directions

Second-order closure for dispersion

Multiple pollutants with explicit non-linear chemistry
treatment. Chemistry in overlapping puffs to correctly
account for interaction among puffs and with background-
allows treatment of non-linear chemistry

Suitable for both near-field and far-field impacts

Computationally more expensive than steady-state
Gaussian models, but less resource-intensive than Eulerian
(fixed grid) models with full chemistry
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Dispersion Model Selection

= SCICHEM selected for modeling amine impacts:

Model both near-source impacts (EJ considerations) and far-source impacts of amines
and products

Model traditional pollutants typically emitted from combustion sources with carbon
capture systems (SO,, NOx, particulate matter, ammonia)

Explicit non-linear chemistry treatment to model amine gas-phase chemistry,
including chemistry leading to O; and OH formation (NOx and VOC chemistry)

Model aerosol (particulate matter) chemistry
Efficiently model a large number of scenarios
Open-source model, distributed freely to the air quality modeling community by EPRI
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Model Inputs

= Emissions
— Chemical speciation and mass flow rates
= Stack Parameters
— Height/diameter
— Temperature
— Velocity
= Meteorology
= Surroundings
— Location
— Terrain and buildings
— Chemical background* (background concentrations of other ambient species)

= The critical piece to our study will be characterizing the emissions.

= We can make assumptions, but with actual emissions rates our simulations can better
approximate impacts to multiple locations

www.epri.com © 2021 Electric Power Research Institute, Inc. All rights reserved.

=Pl


http://www.epri.com/

Harllee Branch Power Plant Plume, June 16, 2013
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Emissions: 165 TPD SO,, 140 TPD NOx
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Latitude

Latitude

SCICHEM Plume
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Ozone Contribution from Mexican EGUs

(SCICHEM study sponsored by TCEQ)
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Conclusions

= Currently conducting a study to evaluate atmospheric impacts of point
source carbon capture

— Applying the SCICHEM photochemical dispersion model
— Enhancing SCICHEM to incorporate amine chemistry

— Will conduct case studies for various conditions, including different background
concentrations

— Will benefit from knowledge from carbon capture experts at EPRI to bound
emissions scenarios

— The broader the collaboration, the more value we can obtain from this study
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