

Research Needs for Direct Air Capture

Klaus S Lackner July, 2019

Direct Air Capture: Closing the Carbon Cycle on the Teraton-Scale

- Air capture can produce feedstock for fuels and chemicals (DACCU)
 - Current rate of oil consumption generates 1.5 Teraton CO₂ in the 21st century
 - DAC can promote solar energy to become the dominant primary energy source
- Air capture can collect waste from past and future emissions (DACCS)
 - Collecting 100 ppm from the atmosphere requires 1.5 Teraton of CO₂ capture
 - Sequestration cannot be avoided anymore
- What else can reach this scale? (Trillion dollar annual revenue industry)
 - Without competing with food production
 - Without large environmental footprints

What took so long?

- Too different from established technologies
 - Heavier-than-air flight and direct air capture are nearly impossible with off-the-shelf technology

New Engineering Field

- Closing the anthropogenic carbon cycle the environment
 - Decoupling fuels from fossil carbon
 - Tapping into a sustainable inexhaustible source of energy
 - Energy security; Supply stability; Sustainable use
 - Stabilizing the carbon level in the environment

• Integrative, interdisciplinary and novel engineering

- Disciplines formed around need and topic
 - Mining engineering
 - Environmental engineering
 - Cybernetics
 - Carbonetics

Carbonetics: The new engineering science for a stable climate and a permanent and secure energy supply support by the most versatile storage and transport system

Aspects of Carbonetics

- Systems Design
- Techno-economics
- Aerodynamics of air contactors
- Sorbent material engineering
- Science of dilute separation
- Separation Membranes
- Application interfaces
- •

Material Science of CO₂ Sorbents and Membranes

- Highly selective
 - $N_2 + O_2$ is 2500 times as abundant, $H_2O 10 100$ times
- Minimal binding energy
 - $\Delta G_0 \leq -22 \frac{kJ}{mol}$ (implies chemical binding)
- Fast kinetics
 - But tempered by inherently slow air-side transport
- High capacity
 - Particularly for thermal activation (lots of energy wasted in the bulk material)
- Dirt cheap
 - 1 ton CO₂ per kg of sorbent requires 10,000 to 100,000 cycles
- Tough as nails
 - Must survive 100K capture and regeneration cycles, sunshine, heat, cold, wind, dust, ...

Sorbents and Membranes

- Membranes can increase selectivity of sorbent
 - Enhance selectivity against water
 - Challenge is exceedingly low partial pressure
 - Flux limitation:

$$F_{max} = \rho_{CO_2} c \sim 5 \text{mol}/(\text{m}^2 \text{ sec})$$

- Density times sound velocity, evaluated at 40 Pa, and ambient temperature
- Better than an electrolyzer membrane
 - 1 Amp/cm²/sec ~ 0.1 mol/m²/sec for a singly charged ion

Actively pumping membranes can eliminate need for batch process

- Couples two different transports
 - E.g., Water following a chemical potential pushes CO₂ up against a chemical potential
 - Analogous to the thermo-electric effect
- Game changer

Membranes are sorbents with two sides

Sorbent Thermodynamics

- Sorbent is characterized by ΔH_0 and ΔS_0
 - Enthalpy and entropy change of the sorbent reaction $Abs + CO_2 \leftrightarrow (Abs \cdot CO_2)$
 - Free energy change determines direction of reaction

$$\Delta G = \Delta H_0 - T \left(\Delta S_0 + R \log \frac{P}{P_0} \right)$$

P is the pressure over the sorbent, T is the temperature, P_0 is the standard pressure at which thermodynamic quantities have been determined.

 $\Delta G < 0$ for capture

 $\Delta G > 0$ for regeneration

Estimating the size of things

$$\Delta G = \Delta H_0 - T \left(\Delta S_0 + R \log \frac{P}{P_0} \right)$$

- ΔH_0 is free for the choosing (needs to be negative)
- ΔS_0 is negative for all sorbents (gas has more entropy)
- $R \log \frac{P}{P_0}$ accounts for entropy change in the gas with pressure

•
$$R \log \frac{P}{P_0} \approx -65 \frac{J}{mol \cdot K}$$
 for air capture $P = 40 Pa$

• Increases logarithmically with pressure, zero at 1 bar

For solid sorbents the range of ΔS_0 is limited -250 J mol⁻¹K⁻¹ < ΔS_0 < -100 J mol⁻¹K⁻¹

Thermal and Pressure swings

P_{thermal}

$$\Delta G = \Delta H_0 - T \left(\Delta S_0 + R \log \frac{P}{P_0} \right)$$

- Thermal swings raise T to increase ΔG
- The moisture swing throws a switch and changes ΔH_0 and ΔS_0
 - Interaction of water, sorbent and CO₂

Optimizing a P-T Swing

- Starting point is ambient air
 - $P_1 = 40 Pa$, $T_1 \sim 300K$
 - Release at higher P and higher T: (P_2, T_2)
 - Estimate the achievable pressure given T_2 or the achievable temperature given P_2

$$\log \frac{P_2}{P_1} = -\left(\frac{\Delta S_0}{R} + \log \frac{P_1}{P_0}\right) \frac{T_2 - T_1}{T_2} \quad \text{or} \quad T_2 = T_1 \left(1 - \frac{R \log \frac{P_2}{P_1}}{\Delta S_0 + R \log \frac{P_2}{P_0}}\right)$$

- A 50K temperature rise could reach a regeneration pressure between 0.006 and 0.1 atm
- To get to 1 atm requires between 90 and 120K temperature rise

Moisture swings are new

- Opens a new door for optimization
 - Barely understood
 - Relating to fundamental properties of water
 - Interactions of ions, hydrophobic resins

Furthermore moisture swing resins are tough, cheap, and fast

Moisture Swing Sorbent for Low Energy Air Capture

Anionic Exchange Resin: Solid carbonate "solution" Quaternary ammonium ions form strong-base resin

Type I Strong Base Resin

2 to 2.5 mol/kg of charge 1 to 1.25 mol/kg of CO_2 capacity Durable, life time 10 to 20 years

- Positive ions fixed to polymer matrix
 - Negative ions are free to move
 - Negative ions are hydroxides, OH-
- Dry resin loads up to bicarbonate
 - $OH^- + CO_2 \rightarrow HCO_3^-$ (hydroxide \rightarrow bicarbonate)
- Wet resin releases CO₂ and unloads to carbonate
 - $2HCO_3^- \rightarrow CO_3^{--} + CO_2 + H_2O$
- Intermediate product stream is air with 5% CO₂
- Ion hydration drives CO₂ affinity
- CO₃⁻⁻ + H₂O → HCO₃⁻ + OH⁻ equilibrium is driven by water content

The effect of relative humidity

Sorbent loading at 400 ppm and room temperature

Free energy of binding CO₂

Reaction proceeds at constant P_{H_2O}

ASU's Direct Air Capture

- Passive System
- Moisture Swing Sorbent
- Mass Manufacturing Design
- Two Stage Concentrator

Multi-Scale Physical Modeling I. From atoms to materials

- Density Functional Theory
 - Quantum-level understanding of sorbents on the molecular scale
 - Modeling the interaction of water, ions, and polymers
- Continuum models of the polymer matrix
 - Transport of H₂O, CO₂, and (OH⁻, CO₂⁻⁻, HCO₃⁻)
 - Diffusion under concentration gradients
 - Response to electric fields
 - Chemical equilibria depend on background water content
 - Understanding moisture driven carbon dioxide pumps

$$\frac{\partial n_i}{\partial t} + \vec{\nabla} \vec{j_i} = C_i$$
$$\vec{j_i} = -D_i \vec{\nabla} n_i + D_i q_i n_i \frac{\sum_k q_k D_k \vec{\nabla} n_k}{\sum_k D_k q_k n_k}$$
$$\frac{n_{H_2O} n_{CO_3^{2-}}}{n_{HCO_3^{-}} n_{OH^{-}}} = K(n_{H_2O}) \Longrightarrow C_i$$

Multi-Scale Physical Modeling II. From microstructure to device scale and beyond

- Multiphase models of composite filter/sorbent materials
 - Porous flow heat transfer in composites, textiles, porous materials
 - Structural characteristics, strength, brittleness,
 - Thermal, chemical and UV resistance
- Fluid dynamics and structural modeling of DAC structures
 - Passive air flows designs
 - response to wind loading
 - Installation scale air flows
- Energy and material flows
 - Heat, water, electric power, interaction with weather
 - Utilization rate as function of ambient conditions
- Interfaces with storage and utilization systems

Techno-economic and LCA modeling

- Sorbent & membrane evaluations
 - Importance and valuation of different characteristics
- Techno-economic assessments
 - Bottom-up, top-down approaches
 - Costing and scaling
 - Assessment of learning curves
- Environmental impact assessments
 - Life cycle assessments
 - Water consumption
- Scaling approaches
 - Numbering up or scaling up?

Moisture swing CO₂ capture & release

Observe what happens in a sorbent sphere

Predict what happens in a membrane?

Moisture Pulse Drives CO₂ release

Transport Model Predicts Active Pumping

Active Membrane with Passive Air Flow Moisture Driven Transport

Carbonetics

- Air capture is at the beginning of a long road
 - Concepts are changing rapidly
 - Formal scientific support has not yet materialized
 - Need to move away from brute force to elegant solutions
- Advances needed
 - Passive or near passive systems to beat Sherwood's Rule
 - Advanced sorbents for efficient collection
 - Pumping membranes for integration
 - Moisture swing sorption is brand new and unexplored

Different Starting Points

