

Office of Clean Coal and Carbon Management

Charter for the Group and Overview of DOE Program Efforts John Litynski Deputy Director Advanced Fossil Technology Systems

July 24, 2019

CARBON CAPTURE – WHERE CAN WE GET CO₂

DIRECT AIR CAPTURE – NAS STUDY

FY16 Congressional Direction – FE \$250K – NAS Study

Advantages

- Flexibility of placement/location
- Captures CO₂ from all sources
- Current and legacy emissions

Challenges

- Dilute CO₂ streams costly to separate
- Process optimization / reducing pressure drop
- Water use
- Landuse
- Carbon Lifecycle

Companies Working on Direct Air Capture¹

Company	System Type	Technology
**Carbon Engineering	Solvent	Potassium hydroxide solution/calcium carbonation
Climeworks	Sorbent	Amine-functionalized filter
Global Thermostat	Sorbent	Amine-modified monolith
Infinitree	Sorbent	Ion-exchange sorbent
Skytree	Sorbent	Porous plastic beads functionalized with benzylamines

DAC/DILUTE SOURCE CAPTURE: FE/NETL PROJECTS

\$200+/tonne

Fixed-bed laboratory unit for testing structured sorbents

https://www.netl.doe.gov/research/coal/project-information/proj?k=SC0015114

\$300+/tonne

The Ohio State University

Membranes (<1% CO₂ concentration)

Continuous membrane fabrication machine at OSU

https://www.netl.doe.gov/research/coal/project-information/proj?k=FE0026919

MICROBIO ENGINEERING

Products: Animal feeds

Test at Orlando Utilities Commission – Stanton Energy Center site Algae Cultivation to capture CO2 from Power Plants and Air

\$300+/tonne

\$200+/tonne**

Carbon Engineering

Wet scrubbing air contactor (400 ppm Direct Air Capture)

Carbon Engineering's research pilot facility in Squamish, BC

https://www.netl.doe.gov/research/coal/project-information/proj?k=FE0026861

Products: Biofuels, food, & nutraceuticals

Test at NCCC

energy.gov/fe

DAC: LEVERAGING EXISTING FE R&D TECHNOLOGIES

- Low Concentration (400ppm)
- Low efficiency 10-50%
- Large volumes of air flow
- No contaminants
- Requires low pressure drop larger machines
- Unique Material Properties Fast kinetics, low oxidation rates

- CO₂ concentrations 100-300X that of air.
- High efficiency (90+%)
- Higher pressure and temperatures
- Contaminants (SO2, NOx, particulates, etc)
- Higher pressure drops
- Unique Material Properties Low degradation rates, low heat of RX

- > Workshop for DAC R&D Priorities July 24, 2019
- > Techno economic assessment (TEA) Baseline for DAC FY2019 (In progress)
- National Resources Assessment for DAC FY2020 (In progress)

Funding Opportunities

- University Coal Fossil Energy Research on Materials novel DAC materials (FY2019)
- Funding Opportunity Announcement / Lab Call (FY2020)

FE R&D PLAN FOR DAC - DRAFT

DAC TODAY: RESOURCE & LOGISTIC CHALLENGES

Sources: SEAB Task Force on RD&D strategy for CO2 Utilization and/or Negative Emissions at the gigatonne scale, Dec 2016

Challenge - Mitigate 1 Gigatonne with Solvent System

DAC Land use: 1000 to 5000 km² (50% eff vs 10% eff)

Power Demand:

- 273,000 Windmills (1.5MWe each) at 35% CF
- Enhanced GeoTherm 150 GW 90% CF
- Natural Gas w/CCS 200 GW NGCC units 90%CF
- Solar 234,400 km² of solar panels
- Coal CCS 200 GW with 95% capture 90% CF

Water Demand:

3,000,000,000+ tonnes /year

Lifecycle Assessment

- Estimates don't include manufacturing supply chain
- End use of CO₂ Stored or products

Total System Costs per 1MMT Facility

Capture costs - \$200 to \$1000/tonne

~\$2 Billion CAPEX, \$100 millon/year per MMT

Sources: Systems Analysis and Cost Estimates for Large Scale Capture of Carbon Dioxide from Air; Simon; Kaahaaina;, Friedmann, Aines; GHGT-10 Proceedings, Energy Procedia 4(2011) 2893-2900

CHARGE TO WORKSHOP CHAIRS, SPEAKERS, AND ATTENDEES

Workshop	o Sessions
----------	------------

R&D Needs for Novel Materials (Lynn Brickett)

R&D Needs for Process Configurations (Mike Matuszewski)

DAC System Optimization

(Roger Aines)

Expectations
Active discussions
No wrong opinions
Be courteous of others opinions
Comment on our DRAFT current efforts, and timeline
Get to know each other and have fun!!!

QUESTIONS

