Unlocking The Hidden Value of Coal Wastes: Critical Minerals Recovery and Extraction

> **USEA Webinar** May 20, 2025

Critical Minerals & Materials from **Unconventional Resources**

M.A.Alvin Senior Program Manager, Critical Minerals Processing

DOE Office of Fossil Energy & Carbon Management

COMMERCIALIZATION

Technology available for wide-scale market use

DEMONSTRATION

System demonstrated in operational environment

SYSTEM TESTING

PRODUCTION

PROCESSING

PROSPECTING

System performance confirmed at pilot-scale

DEVELOPMENT

Technology component validated/integrated

DISCOVERY

Mission — Develop / rebuild U.S. leadership role in the extraction and processing technologies that support an economic, environmentally benign, and geopolitically sustainable production of domestic rare earth elements and critical minerals and materials for use in clean energy and national defense applications

Minerals Sustainability Division Unconventional & Secondary Resource RD&D

Unconventional & Secondary Resource Materials

IMPORTS / DESTINATIONS

Courtesy of Ed Barry, ANL-FECM

Unique Properties & Benefits of Coal-Based Materials

- Higher Heavy Rare Earth Element (HREE)
 Content in Comparison to Conventional
 Resources (Monazite; Bastnaesite)
- Ease of Extraction
 - AMD Physical Beneficiation Is Not Required; Reduced Processing Costs
 - Lignite REE Are Organically Bound
- <u>Abundant Ash Resources</u>
 - Power Generation Fly Ash
 - Legacy Impoundments
- <u>Waste Remediation</u> Active or Abandoned Mines & Land Reclamation with Generation of REE-CMM

Unconventional Feedstocks — Legacy Coal & Ash Materials

U.S. Legacy Coal Waste — 4 Billion Tons Scattered over 1,000 Sites U.S. Legacy Coal Ash — 2 Billion Tons Scattered over 1,300 Sites

	Average Concentration in Domestic Coal	Quantities in U.S. Legacy Waste Coal (Rough OME)	Estimated Average Concentration in U.S. Coal Ash	Quantities in U.S. Legacy Coal Ash (Rough OME)	Potential Supply in U.S. Legacy Coal Ash at Current Rates of Consumption
Nd	9.5 ppm	38,000 tons	86 ppm	172,000 tons	~40-year supply (Estimate)
Dy	3.39 ppm	13,600 tons	31 ppm	62,000 tons	~14-year supply (Estimate)
Li	16 ppm	64,000 tons	144 ppm	288,000 tons	130-year supply
Со	6.1 ppm	24,400 tons	55 ppm	110,000 tons	15-year supply
Ni	14 ppm	56,000 tons	126 ppm	252,000 tons	1.1-year supply
Ir	0.002 ppm	8 tons	0.02 ppm	40 tons	15 -year supply
Pt	0.035 ppm	140 tons	0.3 ppm	600 tons	15-year supply
Ga	5.1 ppm	20,400 tons	10 ppm	20,000 tons	1,100-year supply
Ge	7.2 ppm	28,800 tons	65 ppm	130,000 tons	3,900-year supply
	COALQUAL, Finkelman, Lin, Granite				U.S. Geological Survey, 2022, Mineral Commodity Summaries

Evan Granite, Recovery of Critical Materials from Abundant Domestic Wastes, Byproducts, and Non-Traditional Sources, 48th International Technical Conference on Clean Energy, Clearwater, Florida, June 19, 2024.

Critical Minerals Processing (2014-2023)

Critical Minerals Processing RDD&D (2025-2035/2050)

PROCESSING

U.S. Domestic Self-Reliance

Support Clean Energy, National Defense & Commodity Product Production Next-Gen Technology Advancements

Process Commercialization

Financing, Site Permitting, Infrastructure Supply Chains / Market-Ready Materials Sales & Profits

Stakeholder Participation / Off-Take Agreements

Existing Markets & Supply Chains New Product Development Alloys, Components, Equipment Manufacturing

Advanced Process / System Development

Technology Transfer & Innovation Circuit / System Optimization & Efficiency Improvements Reduced CAPEX / OPEX – AI & ML – Economic Viability Continuous Operation (1,000 hrs) / Operational Repeatability

Process Feedstock Flexibility / Diversification

Resource Sustainability Additional Co-Recovery (C, Li, HREE, Al, etc.) & Value-Added Saleable Products Interagency Collaboration / Goals

Critical Minerals Processing

Courtesy of NETL REE-CM Website

Mary Anne Alvin

Senior Program Manager, Critical Minerals Processing

Office of Fossil Energy & Carbon Management

Minerals Sustainability Division 1000 Independence Avenue, SW Washington, D.C. 20585 <u>maryanne.alvin@hq.doe.gov</u>

Learn more about CMM at DOE <u>energy.gov/criticalmaterials</u>

