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The exigencies of the carbon budget
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Carbon budget based on IPCC SR1.5, Table 2.2 (50% TCRE solid blue; 33% and 67% dashed) with historical emissions on Le Quéré et al., 2018. 
Dotted lines are based on an extension of cumulative emissions trends from 1990 to 2017.

+0.7 GtCO2 per 
year

Out of room!

36 GtCO2/y from Fossil
Fuels & Industry

580 GtCO2 Remaining



Using the budget to define timelines for action
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Absent a nearly 
immediate peak  

and rapid decrease 
in emissions to 

zero, carbon 
dioxide removal 

(CDR) is needed to 
meet the carbon 
budget constraint

Fuss et al., 2018



1. Remove CO2 from the atmosphere 
(or ocean)

2. Sequester this CO2 permanently 
(or nearly), and

3. Result in the emission of less CO2

(and other greenhouse gases) 
than removed

Three necessary characteristics for negative emissions 
technologies
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DAC needs heat and electricity in varying proportions
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Data from NAS, 2018; Compression & conditioning (130 kWh/tCO2) added



Environmental impacts of energy supply varies widely 
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UNEP, 2016; Hertwich et al., 2015

IEA, 2018

Upstream Natural Gas: 9 – 35 gCO2-eq/MJ (50 – 200 
kgCO2-eq/boe)

Combustion Natural Gas: 56 gCO2-eq/MJ

Lifecycle Natural Gas: 65 - 91 gCO2-eq/MJ

US NERC Sub-regions: 215 – 585 kgCO2/MWh

Canadian Provinces: 1.3 – 750 kgCO2/MWh

European Countries: 4 – 228 kgCO2/MWh



Carbon intensity of energy declines in stabilization scenarios
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IEA, 2018 (WEO SDS)



Implications for system negative emissions
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Translating to a research agenda

Low-carbon heat. Current DAC systems require ~70-80% of their energy input in terms of 
heat. What fuel makes most sense from a lifecycle perspective? How could this heat 
provided (at the needed temperature) in a system?

Horses for courses. The availability of fuels will influence DAC system economics. Can DAC 
systems be designed to minimize life cycle emissions with advantaged fuels in mind? 
Can they be coupled to resources to improve economics and reduction efficiency?

Integration of DAC into capture. At gigaton-scales, industrial CCS and DAC would probably 
co-exist and infrastructure may be built around industrial CCS. Can extraction and 
capture be synergistically combined?

Integration of DAC into use. For storage, relatively high CO2 concentrations are needed for 
economics and to manage storage capacity. For utilization, CO2 is not the end product. 
How can DAC be better integrated into conversions? 

Upstream and non-GHG impacts. Direct water use, hazardous sorbent degradation 
products, and upstream sorbent synthesis impacts will be significant at gigaton-scale. 
These must be minimised in technology assessment.
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Questions?

Sean T. McCoy, Ph.D.
sean.mccoy@ucalgary.ca | +1 (403) 220-3178
https://schulich.ucalgary.ca/contacts/sean-mccoy
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