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The exigencies of the carbon budget
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Carbon budget based on IPCC SR1.5, Table 2.2 (50% TCRE solid blue; 33% and 67% dashed) with historical emissions on Le Quéré et al., 2018.
Dotted lines are based on an extension of cumulative emissions trends from 1990 to 2017. e
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Using the budget to define timelines for action
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Three necessary characteristics for negative emissions

technologies

' Atmosphere

Bioenergy

Bioenergy with CCS (BECCS)

Geosphere

Smith et al., 2016

Remove CO, from the atmosphere
(or ocean)

Sequester this CO, permanently
(or nearly), and

Result in the emission of less CO,
(and other greenhouse gases)
than removed
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DAC needs heat and electricity in varying proportions
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Environmental impacts of energy supply varies widely

Upstream Natural Gas: 9 — 35 gCO2-eq/MJ (50 — 200
kgCO2-eqg/boe)

Combustion Natural Gas: 56 gC0O2-eq/MJ
Lifecycle Natural Gas: 65 - 91 gCO2-eq/MJ

kg CO,-eq/boe

2500 3000

3500
bcm

0 500 1000 1500 2000

IEA, 2018

250 1000
900
200 800
700
150 600
500 I:;:l [:
100 400
ol - | s}
50 E] U 200
J__' tl 100
© Downstream g oo T DD&"—‘“*"‘ L — B —
methane 2010 2050 ' 2010 2050 2010 2050 2010 2050 ' 2010 2050 2010 2050 2010 2050 ' 2010 2050 ! 2010 2050
CsP | pv | Hydro | Wind | Geothermal ~ Coal i Coal i NG i NG
] upﬁtrﬂam I 1 1 1 without CCS 1+ with CCS 1 without CCS 1 with CCS
methane _ . o .
©LNG GSP: concentrating solar power; PV: photovoltaic.
® Pipeline UNEP, 2016; Hertwich et al., 2015
m Venting CO;
m Energy for . . _
ocramion US NERC Sub-regions: 215 — 585 kgCO,/MWh

Canadian Provinces: 1.3 — 750 kgCO,/MWh
European Countries: 4 — 228 kgCO,/MWh

UNIVERSITY OF

CALGARY



Carbon intensity of energy declines in stabilization scenarios
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Implications for system negative emissions
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Translating to a research agenda

Low-carbon heat. Current DAC systems require ~70-80% of their energy input in terms of
heat. What fuel makes most sense from a lifecycle perspective? How could this heat
provided (at the needed temperature) in a system?

Horses for courses. The availability of fuels will influence DAC system economics. Can DAC
systems be designed to minimize life cycle emissions with advantaged fuels in mind?
Can they be coupled to resources to improve economics and reduction efficiency?

Integration of DAC into capture. At gigaton-scales, industrial CCS and DAC would probably
co-exist and infrastructure may be built around industrial CCS. Can extraction and
capture be synergistically combined?

Integration of DAC into use. For storage, relatively high CO, concentrations are needed for
economics and to manage storage capacity. For utilization, CO, is not the end product.
How can DAC be better integrated into conversions?

Upstream and non-GHG impacts. Direct water use, hazardous sorbent degradation
products, and upstream sorbent synthesis impacts will be significant at gigaton-scale.
These must be minimised in technology assessment.
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Questions?

Sean T. McCoy, Ph.D.
sean.mccoy@ucalgary.ca | +1 (403) 220-3178
https://schulich.ucalgary.ca/contacts/sean-mccoy
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