
Dr. Srikanta Mishra

Key Challenges and Opportunities on Adaptive Control of Fractures and Fluid Flow in Subsurface Energy Extraction and Storage

USDOE Subsurface Issues Briefing 22 July 2014, Washington DC

Area 1 – Flow Path Enhancement Better stimulation with energized fracturing

- Average frac job uses 2-4 million gallons of water
- Slickwater alternative \Rightarrow N₂ or CO₂ (with foam)
 - Reduces water and proppant requirements
 - Produces more uniformly distributed fractures
 - Improves gas/oil recovery
 - Alleviates water scarcity considerations
- More common in Canada than in the U.S.

Area 1 – Flow Path Enhancement Energized fracturing - challenges

- Cost considerations/perceptions
- Limited data on productivity improvement
- Large-scale supply of N_2/CO_2
- Tubular performance
- Relative permeability effects
- Performance modeling tools

Area 2 – Control of Fluid Flow Nanoparticles for mobility control

- Surfactant stabilized CO₂ foams for EOR applications are costly + high degradation risk
- Alternative \Rightarrow nanoparticles as stabilizing agents
 - Optimal foam generation in high velocity regions
 - Less adsorption and thermal degradation
 - Limited capillary trapping in pores
 - Can be obtained from low-cost natural sources
- Demonstrated in laboratory experiments

Area 2 – Control of Fluid Flow Nanoparticles - challenges

- Cheaper sourcing of natural nanoparticles with good performance
- Performance in field scale
- Better understanding of nanoparticle transport in variety of rock types and fractured media
- Mechanistic models of sweep improvement from nanoparticle introduction

Area 3 – Improved Process Models Prediction of fracture propagation

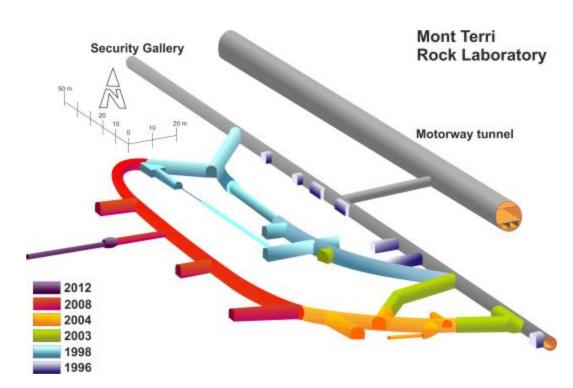
- Coupled fluid flow and geomechanics modeling
 - Knowledge of natural fracture network, reservoir geology, geophysics and petrophysics
 - Can predict : (a) microseismic response, (b) proppant distribution and fracture conductivity, (c) overall fracture network dimensions
 - Data and computation intensive
- Conventional hydraulic fracturing models assume planar frac geometry and simplified hydraulics

Area 3 – Improved Process Models Fracture propagation modeling - challenges

- Understanding of local and regional geomechanical characateristics
- Characterization of natural fractures and their representation via DFNs
- Reduced-physics models of frac propagation for real-time control
- Fracture conductivity distribution using hydraulic tomography

 \mathbf{N}

 \mathbf{N}


Cross-cutting Challenges

- Testing at field scale
 - Technology available but logistical issues
 - Technology tested only in laboratory
- Computational modeling
 - Full-physics models data intensive
 - Reduced physics models not developed
- Research often proprietary in nature

An Outside the Box Proposal

- Mont Terri Swiss underground facility for hydrogeological, geochemical and geotechnical characterisation of Opalinus Clay
- Multiple international partners for 15+ yrs
- Broad range of in-situ experiments

Shale Underground Rock Laboratory

- Patterned along Mont Terri (and other URLs such as Aspo, Grimsel, Mizunami, YMP ESF)
- Public-private partnership (with possibility of international cooperation)
- Potential areas of focus
 - Field-scale transport processes
 - Efficacy of different treatments
 - Testing of tomographic concepts

Concluding Remarks

- Adaptive control of fracturing and fluid flow important for multiple subsurface applications
- Fundamental research needed on materials development and testing, and rock-fluid interaction
- Improved computational models needed for integrated systems and real-time control
- A shale underground rock laboratory (as a publicprivate partnership) would be a valuable resource