THE COLOMBIAN POWER SYSTEM RESILIENCE
A recent history full of experiences

WEBINAR:
Approaches to Utility Resilience: Creating an Energy Sector that is Prepared for the Unexpected

USEA - June 16 2020
The Colombian power system

Main characteristics

- Demand: 68,000 GW/y
- Peak demand: 10 GW
- Capacity: 17.5 GW
 - Hydro: 10.7 GW
 - Thermal: 5.3 GW
 - VG: 1.5 GW
- Wind: 18 MW
- Solar: 28 MW

xm is the Colombian power system and market operator

Taken from www1.upme.gov.co
What does XM understand as resilience?

It’s all about sustainability

Resilience measures the ability to quickly anticipate, prepare, and adapt to changing conditions and to endure, respond, and recover from events of low probability and high impact. **Resilience + reliability** studies allows anticipating, preparing and adapting to the different threats that may reveal vulnerabilities in the electricity system.
Resilience analysis

Detecting vulnerabilities

Nature events: Extreme weather conditions

El Niño and La Niña

Challenges

• How to optimize hydro operation and ensure fuel supply for thermal generation.

• In normal conditions, close to 85% of the power demand is fed with hydro resources. During El Niño, the hydro share is close to 50%. The remaining demand is met mostly with thermal plants.

Actions taken

• Long and mid-term planning considering stochastic optimization and deterministic simulations for water inflows.

• Continuous follow up weather conditions

• Analysts trained for weather and climate forecasting

• Increased coordination of power and gas systems operation

• Increase regional interconnection capacity
Generation outages

Guatapé and Ituango

Events

• During El Niño 2016, Guatapé’s powerhouse caught fire. The system lost the dam with greater regulation capacity and three generators placed downstream.

• In 2018, Hidro Ituango’s diversion tunnels were clogged. To avoid a major catastrophe, engineers let the water flow through the yet-unfinished powerhouse, to stabilize the flow of the river on either side of the dam. The system future energy capacity is compromised.

Actions taken

• Scenario based planning
• Flexibility analysis in the midterm planning to detect lack of reserves
• Policy development: saving pays off campaign during El Niño 2016
• Auctions for renewables: 2.5 GW of solar + wind projects to be installed in the next 4 years under long-term contracts and reliability markets
• New regulation for integrating storage
Transmission network contingencies

Terrorist attacks

Events

- Late 90’s and early 00’s were marked for waves of high attacks to the transmission network by terrorist guerillas
- There has been also terrorist attacks to the gas transmission network
- Difficulties to recover the infrastructure because of mined fields

Actions taken

- Network expansion
- N-k criteria + improved software to evaluate system security
- CAOP state: the system operator can take additional security measures
- Coordination with the army and transmission companies
Pandemic episode

Operating the system under the COVID-19

Strategies to keep the staff safe

- 95% of the staff working from home since March 13, 2020
- Laptops, chairs and screens provided
- Weekly webcasts to provide guidance during the pandemic and how to face the quarantine
- Flexible schedules

Strategies to keep the system operating

- **Distributed operation**: main + back up control centers
- **Sequestration** of control center personnel
- **Shifts** modifications: 3 people x 12 hours
- **Facilities** adjustments: keep distance, individual equipment, constant cleaning and disinfecting
- Health **monitoring**
- Crew **recruitment** and re-training

June 12, 2020

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>12,027</td>
</tr>
<tr>
<td>New cases</td>
<td>1,646</td>
</tr>
<tr>
<td>Total cases</td>
<td>46,858</td>
</tr>
<tr>
<td>Recovered</td>
<td>18,715</td>
</tr>
<tr>
<td>Deaths</td>
<td>1,545</td>
</tr>
</tbody>
</table>
Actions to mitigate vulnerabilities

Infrastructure improvement

- Meshed gas networks
- Generation capacity and energy availability
- Meshed transmission networks
- Integrated action plan
- AMI and communications
- Storage integration
- Distribution network upgrade to integrate DER
Actions to mitigate vulnerabilities

Processes and systems

- Wholesale Market
- Long Term Markets
- Retail Markets
- Transactional Platforms
- Balancing Markets
- Forecasting
- Fuel Supply Coordination
- Real Time Operations
- Stochastic Analysis
- Advanced Simulation
- Cyber Security
- Advanced Analytics
- Knowledge
- Policy and Regulation
Final thoughts

Some things to ponder

• System operator must perform resilience studies to complement traditional reliability analysis. Most of the actions taken from resilience experiences have been reactive instead of proactive

• Low probable and high impact events to include in resilience studies must be according to each system’s characteristics

• Who pays for resilience?
 "Policymakers and regulators need to be more proactive, but the challenge is still the cost against an event's likelihood."
 "Currently, regulators and utilities haven't come to a common agreement about how to quantify resilience."
