

Measurements of Emissions in the Linde-BASF PCC Pilot Units

Minish M. Shah Linde Inc.

U.S. DOE Workshop on Measurement, Monitoring and Controlling Potential Environmental Impacts from the Installation of Point Source Capture Southern Company Energy Center, Birmingham, AL June 8, 2023 Ginde

Making our world more productive

"© Copyright 2023 Linde plc and affiliates. All rights reserved."

Linde/BASF OASE[®] Blue Post Combustion Capture (PCC) Technology Emissions Measurements at NCCC by EPRI and Linde.

Amine Emissions at Linde-BASF PCC 1.5 MW Pilot at NCCC Impact of Aerosols

- Aerosols were suspected to cause high amine losses during 2015 tests based on learnings in previous pilot tests in Germany
 - Specific amine emissions were in 0.2 to 0.5 kg amine/T CO2 (measured using isokinetic sampling of treated gas)
 - Aerosols of 100 nm size were estimated at 5 x 10⁶ particles/cm³, which is much higher than safe threshold of ~10⁴ particles/cm³.
- Activated carbon injection baghouse was installed in 2016
- Significant decrease in amine emissions was observed in the subsequent tests
 - Specific amine emissions were in 0.01 to 0.02 kg amine/T CO2 range
 - Aerosols in 100 to 500 nm range decreased by 100-fold

Reference: DE-FE0007453 – Final Scientific/Technical Report to DOE Appendix – EPRI Test report

Aerosol Controls Prior to Absorber Key to Minimize Amine Emissions

Emissions Measurements at Linde-BASF PCC 1.5 MW Pilot at NCCC Results Summary

SOx/NOx/PM/THC

- >98% SO₂ removed in pre-scrubber; SO₃ in absorber inlet below detection limit
- NOx mostly passes through absorber
- PM not measured at scrubber inlet; PM at absorber inlet were below detection limit
- THC was typically <1 ppm for steady state long duration test</p>

HAPs metals

- Most of HAPs metals were below detection limit
- Some of HAPs metals will go from gas phase into liquid phase and thus represents reduction in air emissions

Amine degradation products

- Ammonia at 1 ppm in absorber outlet indicates amine degradation product
- Formaldehyde and acetaldehyde were detected in the absorber outlet at 0.05 ppm and 0.13 ppm, respectively
- Two ketones and one aldehyde were at below detection limits

Reference: DE-FE0007453 – Final Scientific/Technical Report to DOE; Appendix – EPRI Test report

06/08/2023 Measurements of Emissions in the Linde-BASF PCC Pilot Units

Emissions Measurements at Linde-BASF PCC 10 MW_e Pilot Unit UIUC-Led Large Pilot at CWLP's Coal Plant in Springfield, IL.

- Current design includes
 - Continuous analysis for SO2, NH3 and THC
 - Batch analysis to measure SOx, NOx, aerosols and PM in raw and treated flue gas
- Under consideration to install
 - FTIR + GC-MS for detailed analysis of amine and degradation species
- CWLP plant has both electrostatic precipitator and baghouse filter
 - Aerosols are below safe threshold not requiring further upstream measures
 - Design includes high velocity spray tower on stand-by in case needed

- SOx removal by scrubber is included in PCC to protect amine solvent; PM removal occurs naturally in the scrubber
 - SOx/PM emissions reduction is a co-benefit of CO₂ capture
- Aerosol controls essential to minimize secondary amine emissions into air
 - Measures within absorber can manage aerosols up to 10⁵ particles (50 to 200 nm size)/cm³
 - Higher aerosol particle concentration requires upstream removal
- Current large pilot includes plans for analyzing SOx, NOx, NH₃ and THC emissions
 - FTIR + GC-MS is under consideration to more comprehensively quantify both co-benefits of CCS and secondary emissions from amine solvent

Back-Up

SOX/NOx/PM Measurements at NCCC

	SO ₂ Emissions										
Test No.	Scrubber Inlet ppmv dry	Scrubber Inlet Ib/h	Absorber Inlet ppmv dry	Absorber Inlet Ib/h	Absorber Outlet ppmv dry	Absorber Outlet Ib/h	% Overall Removal				
Test 4, SO3-1	43.8	1.174	0.5	0.013	0.7	0.015	98.7				
Test 5, SO3-2	45.0	1.209	0.5	0.013	0.7	0.015	98.8				
Test 6, SO3-3	43.7	1.182	0.5	0.012	0.7	0.015	98.7				

	NOx Emissions									
Test No.	Scrubber Inlet ppmv dry	Scrubber Inlet Ib/h	Absorber Inlet ppmv dry	Absorber Inlet Ib/h	Absorber Outlet ppmv dry	Absorber Outlet lb/h	% Overall Removal			
Test 1, PM-1	28.6	0.55	33.3	0.65	35.7	0.58	-4.7			
Test 2, PM-2	37.4	0.73	39.5	0.77	47.4	0.77	-6.1			
Test 3, PM-3	34.9	0.68	38.1	0.75	46.1	0.70	-3.7			
Test 4, SO3-1	33.0	0.64	38.3	0.75	45.1	0.68	-6.9			
Test 5, SO3-2	33.4	0.64	39.7	0.77	44.5	0.69	-7.3			
Test 6, SO3-3	33.2	0.64	39.5	0.77	46.7	0.76	-18.0			

	SO ₃ Emissions										
Test No.	Scrubber Inlet ppmv dry	Scrubber Inlet Ib/h	Absorber Inlet ppmv dry	Absorber Inlet Ib/h	Absorber Outlet ppmv dry	Absorber Outlet Ib/h	% Overall Removal				
Test 4, SO3-1			<0.12	<0.0044	<0.12	<0.0037					
Test 5, SO3-2			0.4	0.100	<0.12	<0.0037					
Test 6, SO3-3			<0.12	<0.0044	<0.12	<0.0037					

	Particulate Emissions										
Test No.	Scrubber Inlet ppmv dry	Scrubber Inlet Ib/h	Absorber Inlet grains/dscf	Absorber Inlet Ib/h	Absorber Outlet grains/dscf	Absorber Outlet Ib/h					
Test 1, PM-1			n/a	n/a	0.0030	0.057					
Test 2, PM-2			0.0005	0.010	0.0017	0.032					
Test 3, PM-3			<0.00081	<0.0017	0.0024	0.044					

Reference: DE-FE0007453 – Final Scientific/Technical Report to DOE Appendix – EPRI Test report

HAPS Metals Measurements at NCCC

	Absorber Inlet Concentration				Absorber Outlet Concentration			
		μg/d	lscm		μg/dscm			
	Test 1	Test 2	Test 3		Test 1	Test 2	Test 3	
	PM-1	PM-2	PM-3	Avg.	PM-1	PM-2	PM-3	Avg.
Antimony	1.44	0.88	0.96	1.09	5.67	1.13	1.19	2.66
Arsenic	1.64	0.88	1.02	1.18	2.75	1.54	1.62	1.97
Beryllium	0.07	0.05	0.05	0.06	0.09	0.06	0.06	0.07
Cadmium	0.72	0.44	0.48	0.55	0.91	0.56	0.60	0.69
Chromium	8.58	3.60	1.26	4.48	1.53	8.91	7.50	5.98
Cobalt	0.72	0.44	0.48	0.55	0.91	0.83	0.60	0.78
Lead	1.44	2.00	1.49	1.64	4.27	3.09	4.14	3.83
Manganese	18.90	8.50	8.70	12.03	28.50	15.00	n/a	21.75
Nickel	13.00	6.50	2.10	7.20	2.75	4.76	7.59	5.03
Selenium	9.20	2.50	8.80	6.83	4.49	16.10	5.24	8.61
Mercury	0.54	0.47	0.24	0.42	0.64	0.77	0.32	0.58

Summary of HAPs metals and mercury concentrations during performance tests

values below detection limit of method

Reference: DE-FE0007453 – Final Scientific/Technical Report to DOE Appendix – EPRI Test report

Ammonia, Aldehydes and Ketones Measurements at NCCC

	NH₃ Emissions									
Test No.	Absorber Inlet ppmv dry	Absorber Inlet Ib/h	Absorber Outlet ppmv dry	Absorber Outlet Ib/h	Captured CO ₂ Stream ppmv dry	Captured CO2 Stream Ib/h				
Test 7, NH3-1	<0.017	<0.0001	1.000	0.0060	0.150	0.000				
Test 8, NH3-2	<0.017	<0.0001	0.720	0.0040	0.320	0.000				
Test 9, NH3-3	<0.017	<0.0001	1.200	0.0070	0.380	0.000				

	Absorber Inlet Concentration,				Absorber Outlet Concentration,			
	μg/dscm				μg/dscm			
	Test 10 Test 11 Test 12				Test 10	Test 11	Test 12	
	ALDH-1	ALDH-2	ALDH-3	Avg.	ALDH-1	ALDH-2	ALDH-3	Avg.
Formaldehyde	41.0	50.9	42.9	44.9	60.9	56.8	60.7	59.5
Acetaldehyde	8.4	14.6	10.9	11.3	220.4	260.3	245.9	242.2
Acetophenone	<0.71	<1.7	<1.6	<1.3	<1.5	<2.7	<2.5	<2.2
Isophorone	<0.71	<1.7	<1.6	<1.3	<1.5	<2.7	<2.5	<2.2
Propionaldehyde	<0.71	<1.7	<1.6	<1.3	<1.5	<2.7	<2.5	<2.2

Reference: DE-FE0007453 – Final Scientific/Technical Report to DOE Appendix – EPRI Test report