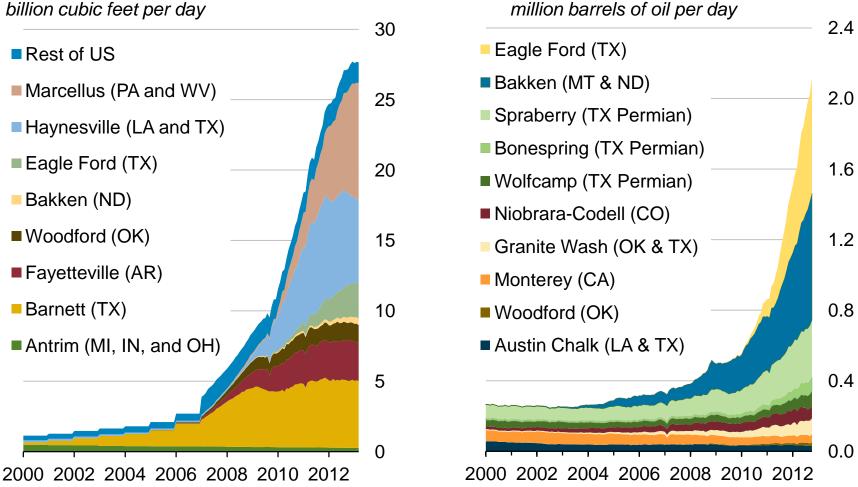
Shale Gas and Tight Oil Development in the U.S., Poland and the Rest of World: Status and Outlook

US-Poland Energy Roundtable United States Energy Association April 24, 2013 / Washington, D.C. by Aloulou Fawzi Project Manager World Shale Oil and Gas Resource Assessments and Activities

U.S. Energy Information Administration


Overview

- Status and outlook of shale gas and tight oil development in the U.S.
- EIA perspective on shale gas and tight oil resources in Poland and the rest of the world

Domestic production of shale gas and tight oil has grown dramatically over the past few years

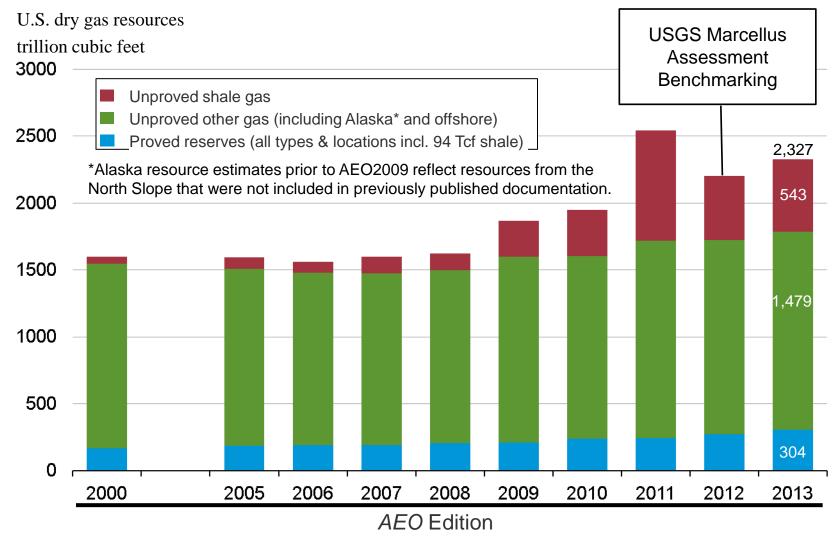
shale gas production (dry) billion cubic feet per day

tight oil production

Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Tight oil: Drilling Info & EIA through December 2012

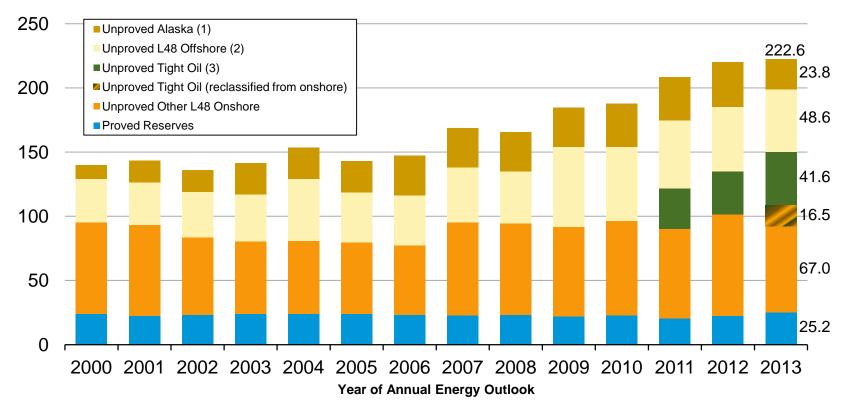
These three drivers impact resource estimation metrics differently over time in an iterative process

Theory	Experiment	Practice					
		Geology					
		Technology					
		Economics					
Resources in Place (GIP)	Technically Recoverable Resources (TRR)	Economically Recoverable Resources (ERR)					
	Well-level data	Well-level data, incl. estimated ultimate recovery (EUR)					



Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI.

Technically recoverable natural gas resources reflect new information, a combination of assessments and EIA updates



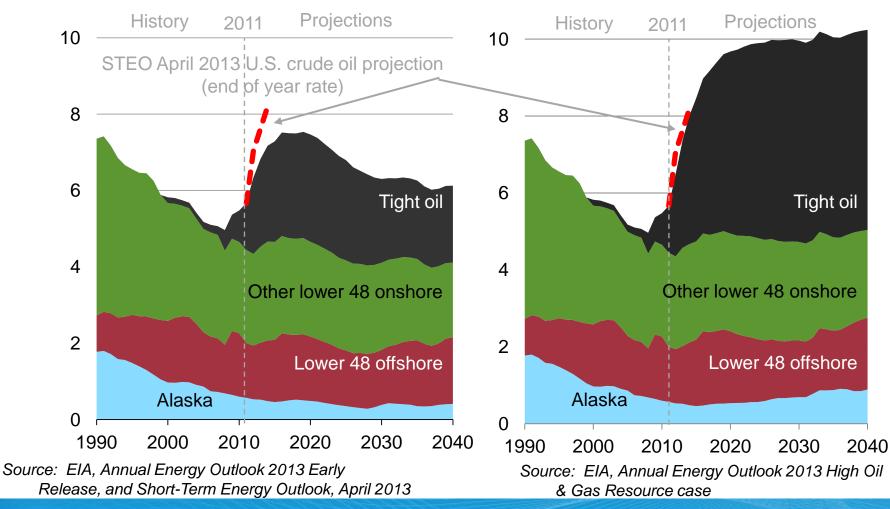
Source: EIA, Annual Energy Outlook 2013 Early Release

Multiple factors have contributed to U.S. crude oil resource estimate increases over the years, with tight oil contributing recently

U.S. crude oil and lease condensate resources in non-prohibited areas billion barrels

- (1) The USGS reduced NPR-A resource estimates, which is responsible for the lower AEO2013 Alaska resources.
- (2) Prior to AEO2009, resources in Pacific, Atlantic, and Eastern GOM OCS were under moratoria and not included.
- (3) Includes shale oil. Prior to AEO2011, tight oil is included in unproved other lower-48 onshore category.

Source: EIA, Annual Energy Outlook 2013 Early Release

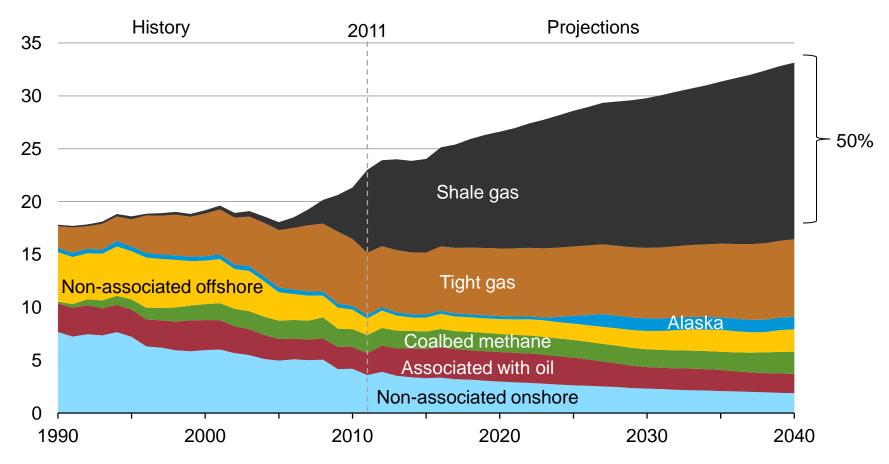


U.S. tight oil production leads growth in domestic production

Reference case

High Oil & Natural Gas Resource case

U.S. crude oil production (million barrels per day)

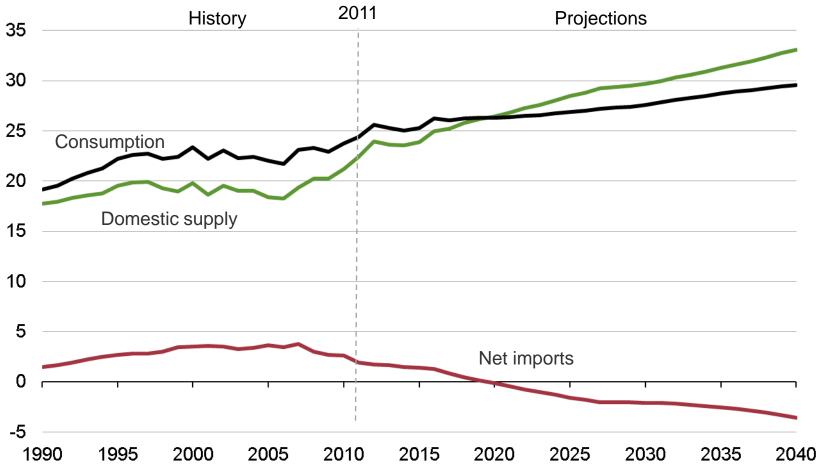


Aloulou Fawzi

US-Poland Energy Roundtable, Washington, DC April 24, 2013

Shale gas production leads growth in production through 2040

U.S. dry natural gas production trillion cubic feet

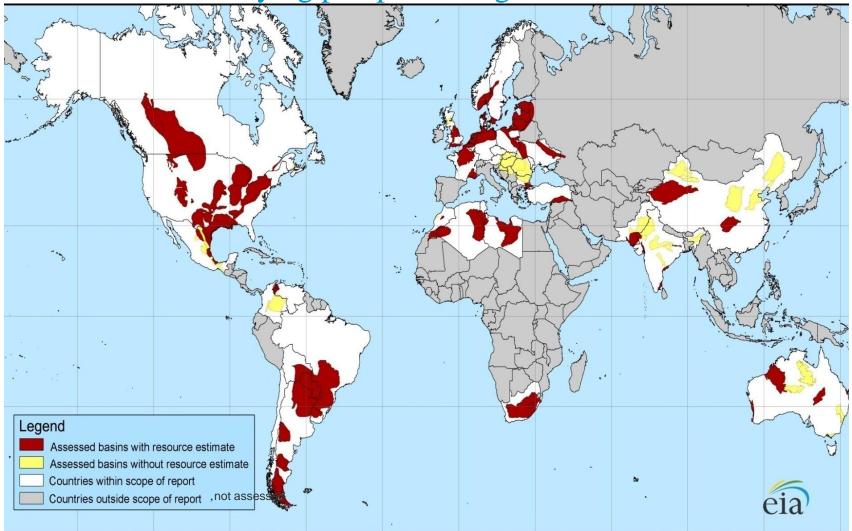

Source: EIA, Annual Energy Outlook 2013 Early Release

Domestic natural gas production grows faster than consumption and the U.S. becomes a net exporter of natural gas around 2020

U.S. dry gas

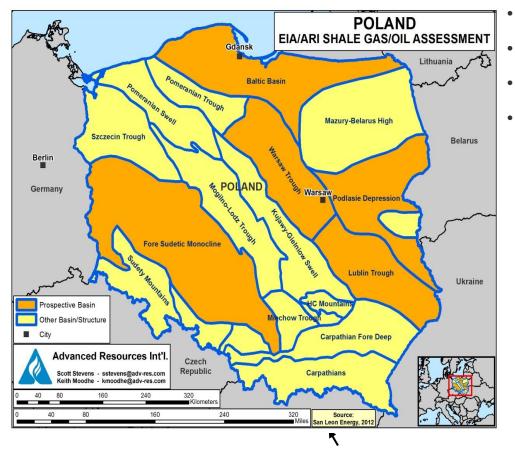
trillion cubic feet

Source: EIA, Annual Energy Outlook 2013 Early Release



Foreign joint venture investment in U.S. shale plays

Foreign		Domestic		Amount	
Partner	Country	Partner	Shale Play	(\$B)	Year
British Petroleum	UK	Chesapeake	Woodford	1.70	2008
British Gas Group	UK	EXCO	Marcellus	0.95	2009
StatoilHydro	Norway	Chesapeake	Marcellus	3.38	2009
Reliance	India	Pioneer	Eagle Ford	1.36	2010
Reliance	India	Atlas	Marcellus	1.70	2010
Reliance	India	Carrizo	Marcellus	0.39	2010
Total	France	Chesapeake	Barnett	2.25	2010
CNOOC	China	Chesapeake	Niobrara	0.57	2010
British Gas	UK	EXCO	Haynesville	1.30	2010
Mitsui	Japan	Anadarko	Marcellus	1.40	2010
CNOOC	China	Chesapeake	Eagle Ford	1.08	2011
KNOC	Korea	Anadarko	Eagle Ford	1.55	2011
Marubeni	Japan	Marathon	Niobrara	0.27	2011
Mitsui	Japan	SM Energy	Eagle Ford	0.68	2011
GAIL	India	Carrizo	Eagle Ford	0.10	2011
Total	France	Chesapeake/EnerVest	Utica	2.30	2012
Sinopec	China	Devon	TMS, Niobrara, Utica	2.20	2012
Marubeni	Japan	Hunt Oil	Eagle Ford	1.30	2012
Osaka Gas	Japan	Cabot Oil and Gas	Eagle Ford	0.25	2012
Sumitomo	Japan	Devon	Wolfcamp	1.40	2012
Sinochem	China	Pioneer	Wolfcamp	1.70	2013
Source: EIA, trade media			Total	28.17	

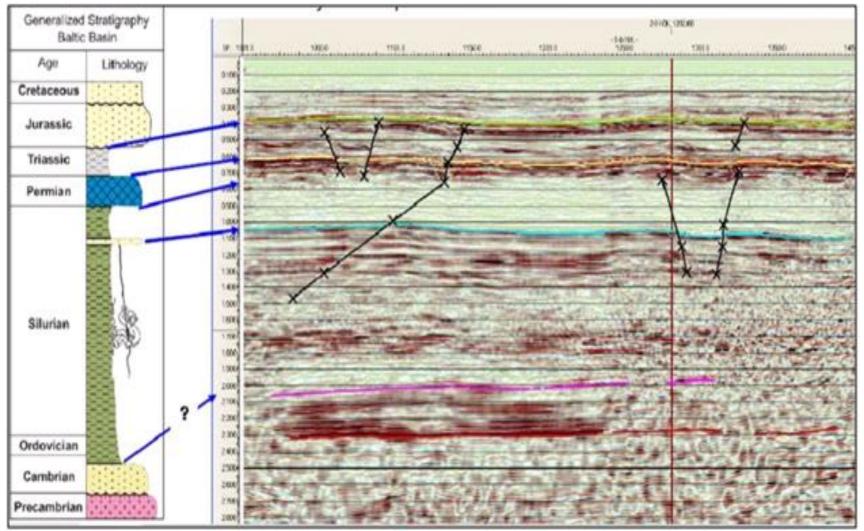

EIA study to update & expand coverage of shale gas assessment of 2011 and identifying prospective tight oil formations

Source: U.S. Energy Information Administration with ARI, Inc. 2011 www.eia.gov/analysis/studies/worldshalegas/

Poland assessed basins

- Baltic/Warsaw
- Lublin
- Podlasie
- Foe Sudetic

Activities: 30 vertical data wells, 6 vertical and 2 horizontal production test wells.


PGNiG, ConocoPhillips and Chevron, Marathon, Talisman

Total taking over Exxon stakes in Lublin and Podlasie

Source: EIA/ARI World Tight Oil and Shale Gas Resource Assessment 2013 (Preliminary, Do Not Cite)

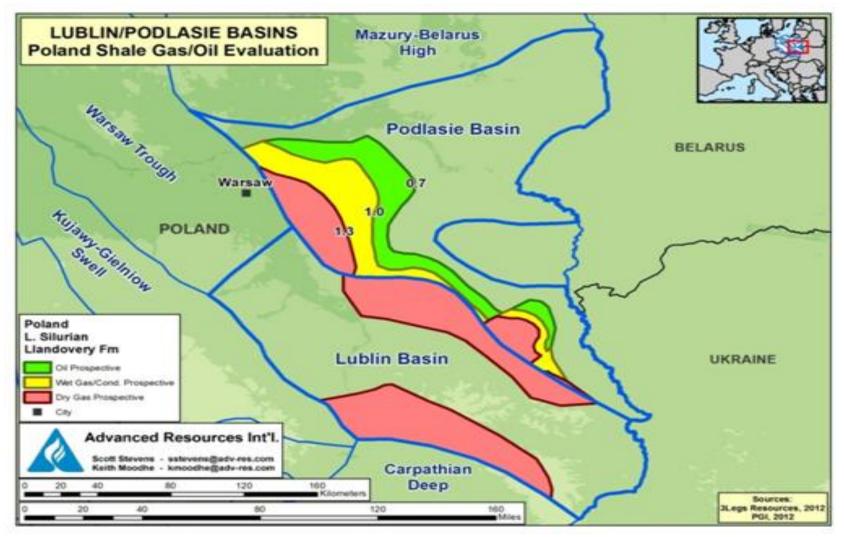
Silurian, Ordovician and Cambrian formations were targeted for assessing Baltic, Podlasie and Lublin basins

Source: LNG Energy Ltd.

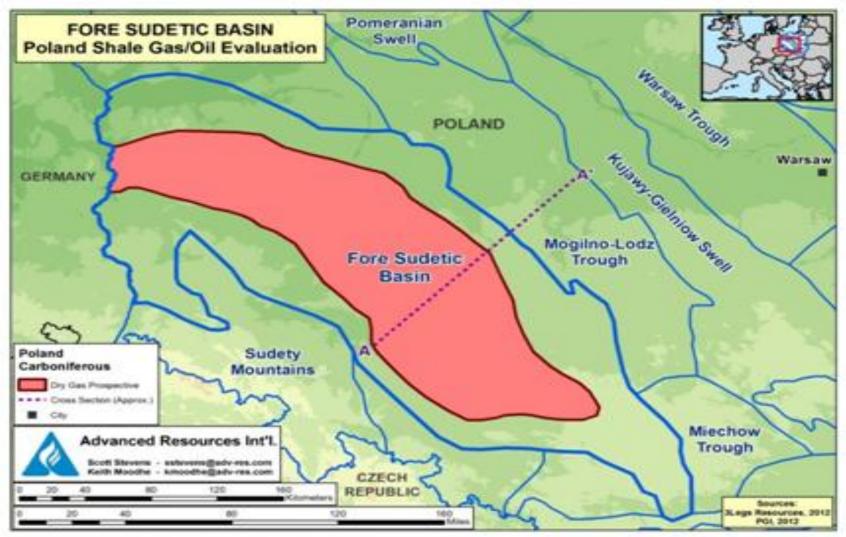
Stratigraphy of the lacustrine-deposited Carboniferous and younger formations in the Fore-Sudetic Monocline

AGE	LITHOSTRATIGRAPHY THICKNESS					LITHOLO- GICAL SEQUENCE	
TRIASSIC		Bunt- sand- stein	Lower	320	2		
				Aller Z 4 Series	7.5	-0C-100C-10CC	
		Leine Z 3 Series	Na _a	Youngest salt	to 41		
				Main anhydrite Grev salt sitstones	25		
			A.2	Basal anhydrite	20	A A A A A	
dilog	BROUP	Stassfurt Z 2 Series	Ca ₂	Main dolomite	50 - 70		\bigcirc
	ž		A,9	Upper anhydrite	16		
PERMIAN	ZECHSTEIN GROUP	Werra Z 1 Series	Na,	Oldest salt	to 105		
		5	A,d	Lower anhydrite	25		
			Ca,	Zechstein Imst	20 - 40		~
	ROTLIEGENDES GROUP		P1	Coal-bearing shales	100 - 160	(((
C/ F	EROL	NI- JS			100	ナトト	*

Source: San Leon Energy, 2012


Baltic basin map showing thermal maturity window for the Lower Silurian Llandovery shale based on calculated vitrinite reflectance (Ro).

Source: EIA/ARI World Tight Oil and Shale Gas Resource Assessment 2013 (Preliminary, Do Not Cite)


Lublin and Podlasie basin map showing thermal maturity window of Lower Silurian Llandovery shale

Source: EIA/ARI World Tight Oil and Shale Gas Resource Assessment 2013 (Preliminary, Do Not Cite)

Fore-Sudetic Monocline of southwestern Poland, showing shale prospective area

Source: EIA/ARI World Tight Oil and Shale Gas Resource Assessment 2013 (Preliminary, Do Not Cite)

Uncertainties that could slow global growth of shale gas and tight oil

- Resource quantities and distribution
- Surface vs. mineral rights
- Risk appetite of industry participants
- Infrastructure and technology
- Environmental constraints

For more information

U.S. Energy Information Administration home page | <u>www.eia.gov</u>

Annual Energy Outlook | <u>www.eia.gov/forecasts/aeo</u>

Short-Term Energy Outlook | <u>www.eia.gov/forecasts/steo</u>

International Energy Outlook | <u>www.eia.gov/forecasts/ieo</u>

Today In Energy | <u>www.eia.gov/todayinenergy</u>

Monthly Energy Review | www.eia.gov/totalenergy/data/monthly

Annual Energy Review | www.eia.gov/totalenergy/data/annual

