
Carbon Conversion Program USEA Presentation – 11/09/2023

Joseph Stoffa, PhD
Technology Manager

National Energy Technology Laboratory (NETL)

One of 17 U.S. Department of Energy (DOE) national laboratories; producing technological solutions to America's energy challenges.

Mission

- Ensuring affordable, abundant and reliable energy that drives a robust economy and national security, while
- Developing technologies to manage carbon across the full life cycle, and
- Enabling environmental sustainability for all Americans.

Vision

• To be the nation's premier energy technology laboratory, delivering integrated solutions to enable transformation to a sustainable energy future.

Strategic Vision and Programmatic Update

Mission

- Demonstrate and ultimately deploy carbon management technologies through multiple carbon conversion approaches
- Mitigate externalities of fossil fuel use in a just and sustainable way, with the goal of achieving 50% reduction in U.S. GHG pollution by 2030 and a carbon-neutral economy by 2050.

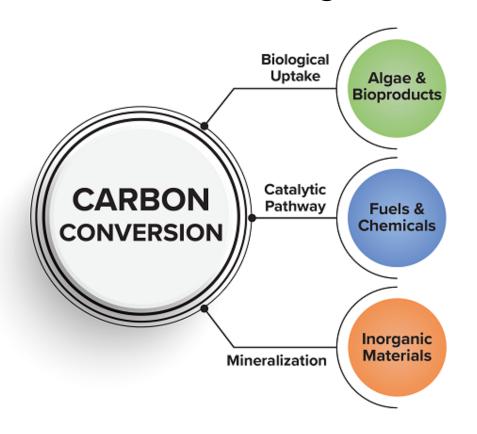
Goals

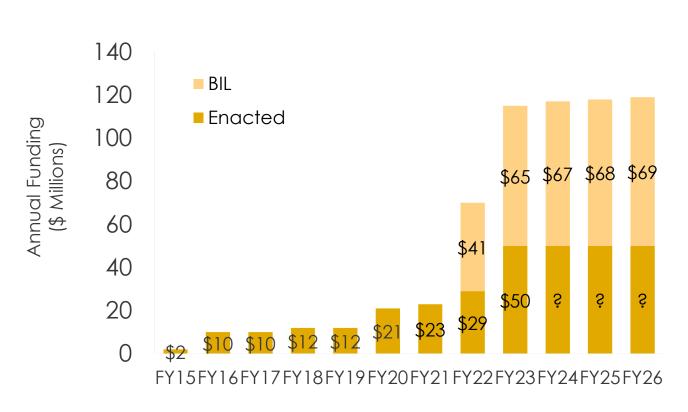
- Support R&D that can convert CO₂ into products
 - Conversion must be environmentally and economically attractive
- Support scaling (demonstration) of technology where appropriate

Drivers

- United States 2022 CO₂ energy related emissions ≈ 5.0 gigatonnes
 - Total global equivalent ≈ 36.8 gigatonnes

Challenges


- Scale of CO₂ emissions relative to demand
- Qualifying economic viability and environmental impact requires significant resources
- Availability and carbon footprint of energy inputs (e.g. electricity, hydrogen, etc...)
- "It's tough to make predictions, especially about the future"



Program Structure and Budget

Carbon Conversion Program R&D Areas

Carbon Conversion Program Within NETL

R&D through Research and Innovation Center

- Majority focus on conversion into chemicals
- Activity in catalyst design, microwave reformation, reactive capture, and more

Life cycle Analysis through Energy Systems Analysis Team

- · Vital to determining economic viability and environmental impact
- Active in Global CO₂ initiative
- Challenges
 - Working to harmonize LCA methodology with other groups
 - Requires collaboration across multiple offices, departments, and external entities

Techno-economic analysis through Energy Process Analysis Team

- All successful technologies must add value
- Sensitivity analysis dependent upon many unknowns
- Not as straightforward to qualify as technical viability

Carbon Conversion Through NETL via BIL

BIL represents ~\$310MM investment over five years One aspect is "Utilization Procurement Grants," aka UPGrants

https://netl.doe.gov/upgrants

DE-FOA-0002829

Demonstration Grants

50% cost share

To Eligible Entities

States, local gov, public utility/agency

Procure and use commercial or industrial products

Derived from anthropogenic carbon oxides

Less GHG emissions than incumbent

Vendor must pass critical review

Eligible entities are defined as states, units of local governments, or public utilities and agencies. Eligible entities can learn more about the Utilization Procurement Grants (UPGrants) Program by visiting the <u>Eligible Entities information page</u>. Additional supporting information can be found by visiting the UPGrants Resources page.

Carbon Conversion Through NETL

Extramural research outside of NETL

Various funding mechanisms employed

- Field Work Proposals with other national laboratories
- Funding Opportunity Announcements
 - Majority of funding is competitively awarded
- Grant Programs
 - SBIR and STTR for small businesses and institutions of higher education
- Other mechanisms including TCF, ACT, EPSCoR

Robust project portfolio

- Thirty-five active projects within the portfolio and growing quickly
 - Mineralization, catalytic pathway, and biological uptake

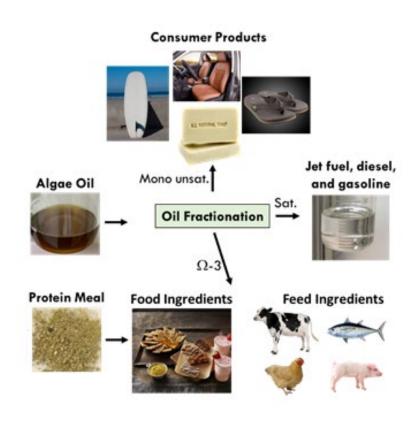
Carbon Conversion via Biological Uptake

A range of products are possible

- Animal feeds
- Nutraceuticals
- Dyes/colorants
- Polymers
- Soil amendments
- Fuels
 - Specific to the mission of DOE EERE's BETO (BioEnergy Technologies Office)

Advantages and challenges

- Uses well understood processes (10,000+ years of human agricultural experience)
- Mostly enabled with catalog engineering (uses COTS equipment)
- Biological processes well suited to creating many complex carbon molecules
- Large areas required to achieve gigatonne scale
 - Kinetically slower than higher temp/pressure processes


Carbon Conversion via Biological Uptake

Pictures courtesy of University of Illinois Urbana-Champaign

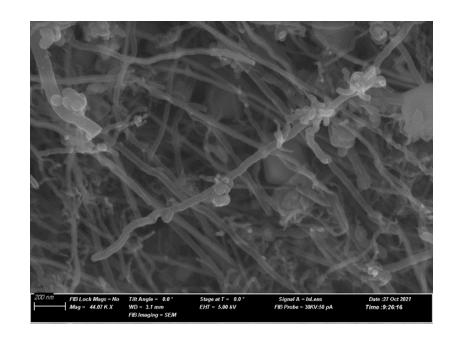
Picture courtesy of Global Algae Innovations

Picture courtesy of University of Maryland Center for Environmental Science

Carbon Conversion via Catalytic Pathway

A wide range of products are possible

- Fuels
- Polymers
- Solid carbons
- Alcohols
- C2-C4 products (ethane, propane, butane, etc...)
- Methanol and Methane


Advantages and challenges

- Pathways to gigatonne scale exist
- Almost any molecule can be synthesized
 - Including those currently derived from fossil fuels
- Value of products must outweigh cost of energy inputs
- Breakthroughs may require significant funding (e.g. electrochemistry and catalysts)

Carbon Conversion via Catalytic Pathway

Plb e Methanol Water
CO₂
Methyl Formate
HCOOH

Picture courtesy of SkyNano

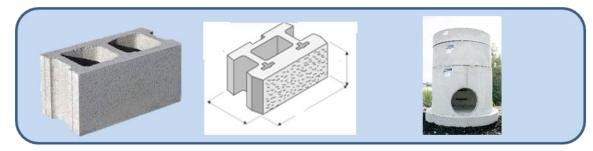
Picture courtesy of University of Louisville

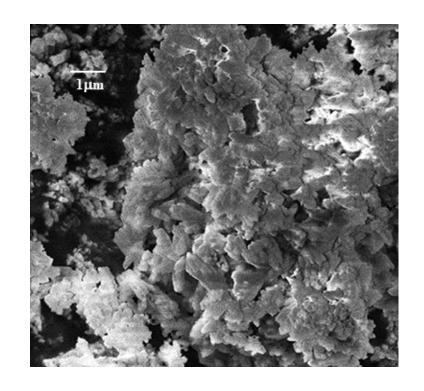
Carbon Conversion via Mineralization

A limited range of products are possible

- Cured concrete blocks (CMUs)
- Synthetic aggregates
- Suboxides
- Other building materials

Advantages and challenges


- Can be energetically downhill
- Can apply at gigatonne scale
- Mostly enabled with catalog engineering (uses COTS equipment)
- Can address other waste streams (e.g. produced water or mine tailings)
- Products often have a low specific value (i.e. \$/tonne requires large scale)


Carbon Conversion via Mineralization

Pictures courtesy of UCLA

Picture courtesy of University of Wisconsin Madison

Necessity of TEA/LCA for an Uncertain Future

Tomorrow will look a lot like today

- Mix of fossil, renewable, and nuclear resources
 - Abundant waste heat integration opportunities
- Industrial electricity prices of \$60 \$80 / MWh

Inexpensive and abundant hydrogen

- \$1/kg Hydrogen
 - Thermochemical conversion of CO₂ into chemicals and plastics
 - Industry widely decarbonized (e.g. steel, cement, fertilizer)

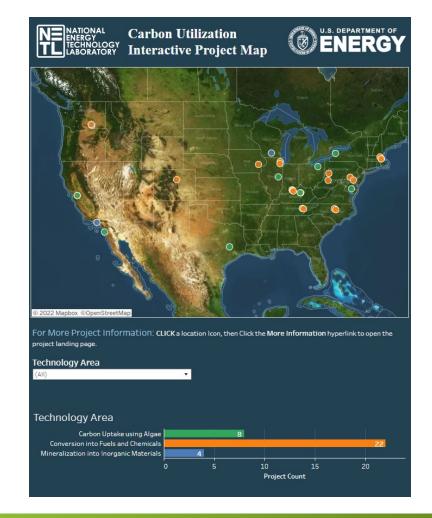
Techno-cornucopian worldview

- Inexpensive electricity at \$20 \$30 / MWh
- Widescale electrification
- Favorable for electrochemical approaches

Other unknowns

Carbon prices/credits, DAC costs, energy breakthroughs, R&D costs, etc...

Carbon Conversion Program Tools



https://netl.doe.gov/carbon-management/carbon-conversion

NETL CO2U LCA GUIDANCE TOOLKIT

https://www.netl.doe.gov/LCA/CO2U

Carbon Conversion Contacts and Resources

Joseph Stoffa

NETL Technology Manager

Joseph.Stoffa@netl.doe.gov

Emily Connor

DOE HQ BIL Program Manager

Emily.Connor@hq.doe.gov

https://netl.doe.gov/carbon-management/carbon-conversion

