

Well Integrity in CCS/CCUS Projects

Presented at:

United States Energy Association

DOE Well Integrity Briefing

21 November 2014, Washington, D.C.

by

Ron Sweatman, Principal Advisor – Petroleum Engineering Reservoir Development Services, Baker Hughes

Overview of Well Integrity in CO₂ Projects (CO₂ Injection for Storage & EOR)

- Well integrity maintained by best practices, e.g.:
 - ~100 yrs. of lessons learned in oil & gas wells
 - ~40% of oil & gas production is sour (CO₂ & H₂S)
 - API standards, specifications, and recommended practices
 - API technical report on CO₂ EOR project design & operations
 - CCP book, esp. chapters on well design & construction
 - CSA Z741 standard for all phases of CCS projects
- CO₂ well integrity issues are:
 - Similar to oil & gas wells
 - More severe than sweet oil & gas production
 - Less severe than highly sour production and acid gas injection
 - Low risk in modern wells and in new wells
 - Higher risk in wells drilled without best practices
- Monitoring & Repairing Leaks Restores Well Integrity

Well Integrity in CO₂ Injection Projects

- >18,000 CO₂ EOR wells worldwide (OGJ)
- 95% of CO₂ EOR wells in USA
- Successful environmental protection
 - Wells designed with multiple pressure barriers
 - No failures of all barriers
 - Monitoring and mitigation is routinely practiced
 - Monitoring helps protect USDW
 - Mitigation keeps flows normal
 - Field-wide monitoring gaining acceptance

Abnormal Flows in CO₂ Injection Projects

- No evidence of leakage into USDW or air
- Abnormal flows ("leakage") found & fixed by,
 - Mass balance measurements
 - Periodic MIT, flow profile logging, etc.
 - Flow path sealing technologies
- Flows far up-hole are rare (>1 barrier fails)
- BUT, risk and costs can threaten project viability
 - especially offshore
- Frequent flow monitoring can reduce risks

MIT Results in Injection Wells

(Koplos et al, 2007)

Texas UIC Data - Class II EOR Wells (1983-2005)

Injection Type	Years	Total # of Wells	Total # of Wells with MIT Failure	% Wells with MIT Failure
acid gas	pre-1995	568	35	6.2%
	1995-1999	594	9	1.5%
	2000-2005	748	61	8.2%
	All Years	752	98	13.0%
CO ₂	pre-1995	3,324	135	4.1%
	1995-1999	3,432	46	1.3%
	2000-2005	3,978	298	7.5%
	All Years	4,105	455	11.1%
fresh water	pre-1995	5,395	197	3.7%
	1995-1999	5,703	57	1.0%
	2000-2005	6,175	359	5.8%
	All Years	6,400	596	9.3%
brackish water	pre-1995	10,713	483	4.5%
	1995-1999	12,715	223	1.8%
	2000-2005	14,488	731	5.0%
	All Years	16,060	1,366	8.5%

Designing Wells for Integrity Risks

(CCP Book Chapter 2)

Description		Potential Risks and Concerns	Materials	
	Tubing Hanger	CO ₂ corrosion may be associated with well back-flushing provision and process interruptions.	CRA - Generally high Nickel Content	
	Conductor Casing	Some aquifers have a potential external corrosion risk.	Carbon steel - consider external coating.	
	Surface Casing		Carbon steel.	
	Injection Tubing	Provision for periodic back-flushing and process up-sets may yield water exceeding 8,000 mpy	GRE lined Carbon Steel or CRA.	
	Production Casing	Metallurgy in accordance with industry standards for any contaminants in CO ₂ .	Carbon Steel - Surface to immediately above base of sealing formation.	
	Production Liner	Process upsets & provision for back- flushing may result in high water content CO ₂ in the injection zone. Also there may be contaminants in the CO ₂ such as H ₂ S.	CRA. Industry standard if required for applicable contaminants.	

Abbreviations used: CRA = Corrosion Resistant Alloy; GRE = resin epoxy; NACE = National Association of Corrosion Engineers.

Typical Well Design to Resist Corrosion

API Report (2007): "Summary of Carbon Dioxide Enhanced Oil Recovery (CO₂EOR) Injection Well Technology"

Planning to Prevent Corrosion

- Determine the severity of corrosion conditions
- Get geochemical data from mud logger or cores
- Use corrosion model predictions over life of well
- Run lab tests with predicted pH values
 - Cement core tests in Hassler Cells
 - Coupon tests for metallurgy in tubulars, DH tools & wellheads
 - Chemical barriers in formation core tests
 - Treatments for packer fluids, drilling & completion fluids
 - Elastomer tests for packer & wellhead sealing elements
- Select well materials based on modeling & lab tests
- Prepare contingency plan for remediation

Modeling pH of CO₂ in Brine

CO₂ Injection and Trapping Mechanisms

(Zhu, 2009)

Equilibrium and rate calculations for corrosive brines in rocks & soluble minerals

- Prior to project: design well tubulars, packers, and cements.
- Monitor data: provide in situ conditions during flood for remediation.

H2O	OH-	KCl(aq)	smectite-na
H+	AI(OH)2+	KSO4-	k-feldspar
Ca+2	Al(OH)3(aq)	MgCl+	chlorite
Mg+2	AIOH+2	MgHCO3+	hematite
Na+	HAIO2(aq)	MgSO4(aq)	pyrite-2
K+	Al+3	NaCl(aq)	smectite-ca
Fe+2	NaAlO2(aq)	NaCO3-	albite~low
SiO2(aq)	CaCl+	NaHCO3(aq)	dolomite-2
HCO3-	CaCl2(aq)	NaHSiO3(aq)	siderite-2
SO4-2	CaCO3(aq)	NaOH(aq)	ankerite-2
AIO2-	CaHCO3+	NaSO4-	dawsonite
CI-	CaOH+	SO2(aq)	
O2(aq)	CaSO4(aq)	HCI(aq)	
Acetic~Acid(aq	FeCl+	calcite	
CO2(aq)	FeCl4-2	kerogen-os	
CO3-2	FeCO3(aq)	magnesite	
Fe+3	FeHCO3+	quartz	
H2(aq)	H2S(aq)	kaolinite	
HS-	H3SiO4-	illite	
CH4(aq)	HSO3-	oligoclase	

Cements & CWD Prevent Corrosion

- Challenge: Corrosion prevention and mitigation methods
 - May occur in old and new wells
- Solutions:
 - CO₂ resistant, self-sealing cements (Portland based when pH >4.0)
 - CWD chemical barriers in the rock

Self-Sealing CO₂ Cement after Stress Cracking

- Dynamic CO₂ flow test
 - Pre-cracked Cement Core Specimen
 - Core flow test using Hassler sleeve

Stress Cracks Sealed by Self-Sealing CO₂ Cement

Typical un-cracked sample

Cracked sample (arrows show the healed crack)

Monitoring, Inspection, Modeling Tools

- Annular pressure monitoring (API RP 90-1 & 90-2)
- Slick-line casing/tubing inspection (impression block, camera, etc)
- Wireline-conveyed logging tools (CBL, calipers, spinners, etc)
- Seismic array surveys & imaging
- Downhole pressure/temperature (P/T) data modeling
- Well flow meters, tracers & P/T gauges for mass balance data analysis
- Micro-deformation measurements & imaging
 - Surface & downhole tiltmeters
 - Satellite-based InSAR (interferometric synthetic aperture radar)
- Fiber optic sensing
 - DAS (Distributed Acoustic Sensing)
 - DTS (Distributed Temperature Sensing)
 - DSS (Distributed Stress Sensing)
- CO₂ flow predictions via reservoir engineering models
 - Benchmarked and calibrated by monitoring data
 - Periodically verified by monitoring data

Find Abandoned Wells and Field-wide Monitoring

- ➤ Magnetometer surveys locate old/unrecorded wellbores
 - Know when CO₂ flow approaches looks abnormal
 - Compare plume flow to old well locations
- > Barrier wells use water injection
 - Control plume movement to AOR
 - Help protect old wells from corrosion
 - Prevent flow under sensitive sites

Long Term Monitoring for Decades

3D Perspective of Magnetic Survey

Sealants to Repair Well integrity

- > Primary cements formulated for remedial jobs
 - Profile Control Treatments (SPE Monograph, etc)
 - Squeeze annular & out-of-zone flows (SPE103044)
 - Plug-backs
- > In-situ cross-linked polymers
- ➤ In-situ polymerized monomers (SPE 70068)
- Latex-resin systems externally activated
- Internally or externally catalyzed silicates
- > Crystallized copolymer (SPE 101701, etc)
- Rubber cement squeezes (SPE 26572)
- Resin Systems

Longevity:....all sealant types must maintain sealing indefinitely

- Challenge: Re-Plugging old wells
 - Old P&A standards may not meet needs for CO₂ EOR or CCS

• Solution:

- Standard wellbores: re-enter, drill out old plugs, clean wellbore to adequate depth, MIT & diagnostic logs, re-plug with cement, re-test each
- Non-standard (sub-grade pipe, cement, etc) wellbores: re-enter, drill out old plugs, clean wellbore to required depth, MIT + logs, run wireline pipe inspection, mill out damaged casing in required intervals, plug cement at milled-out intervals & those in regulations, re-test each (bottoms up)

Challenge: Tubing and Casing Leaks May occur in old and new wells

• Solution:

- Diagnostics to pinpoint detection: pressure communications, MIT, pipe inspection logs, pulsed neutron or other logs, downhole camera, etc
 Repair: pull/replace-or-repair/re-run/re-test pipe or squeeze

 Pipe-repair: casing patches, expandable liners, pipe connections, etc
 CO₂ resistant cement squeezes
 Chemical sealants: CO₂ resistant gels, resin systems, etc

 P&A liner section, drill sidetrack, run new completion
 Repeat diagnostics to confirm sealing integrity: MIT, logs, etc

- Challenge: Behind casing flow
 May occur in old and new wells
- Solution:
 - Apply diagnostic tools to pinpoint leak flow path
 - Design/Execute
 - Perforating into leak path

 - Treatments (squeeze sealants)
 CO₂ resistant cement squeezes
 CO₂ resistant chemical sealants: gels, resin systems, etc
 - Repeat diagnostics to validate success

- Challenge: Caprock Seal Integrity Failure
 - Leaks via fractures and unsealed faults may occur in some reservoirs
- Solution:
 - Apply diagnostic tools (WL logs, seismic, micro-deformation, etc)
 - Pinpoint leak flow path in fracture or fault between wells
 - Design/Execute
 - If needed, coil-tubing drilling into leak path
 - Treatments (squeeze sealants)
 - CO₂ resistant cement squeezes or gel-cement stages squeezed
 - CO₂ resistant chemical sealants: gels, resins, etc
 - Repeat diagnostics to validate success: sealed leak for CO₂ sweep & containment

Challenge:

Injection/production perforation-flow profile control (improve sweep & stop losses)

Solution:

- Apply diagnostic tools (modeling, seismic, micro-deformation, WL logs, etc)
- Design/Execute:
 - Treatments (squeeze sealants)
 - CO₂ resistant cement squeezes to seal perf tunnels
 CO₂ resistant chemical sealants (gels, resins, etc) to seal perm
 Mechanical devices: flow control valves, etc to control flow into perfs
- Repeat diagnostic monitoring to confirm success

- ➤ Cased-Hole Liner (CHL) to patch casing
- Provide cost-effective repairs to any length of casing
- Specialized CR13 expandable liner systems

Thank you Questions or Comments?