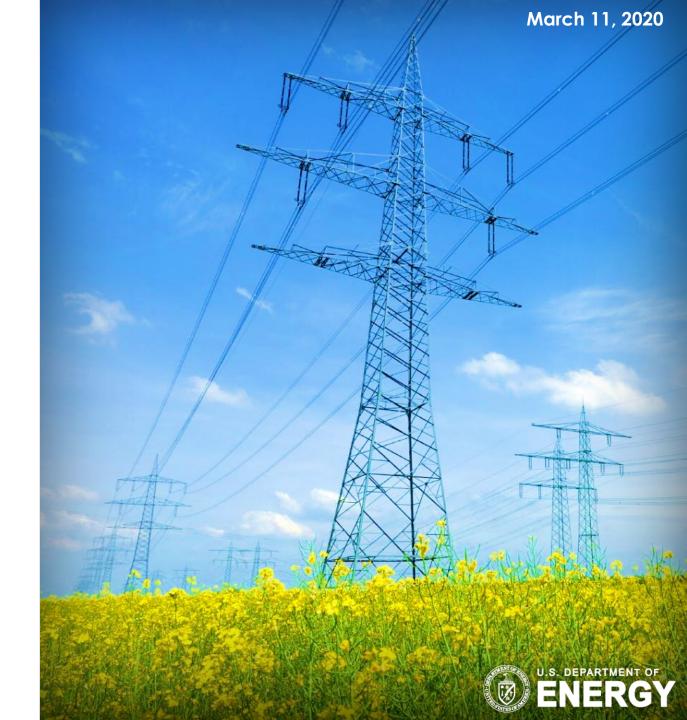
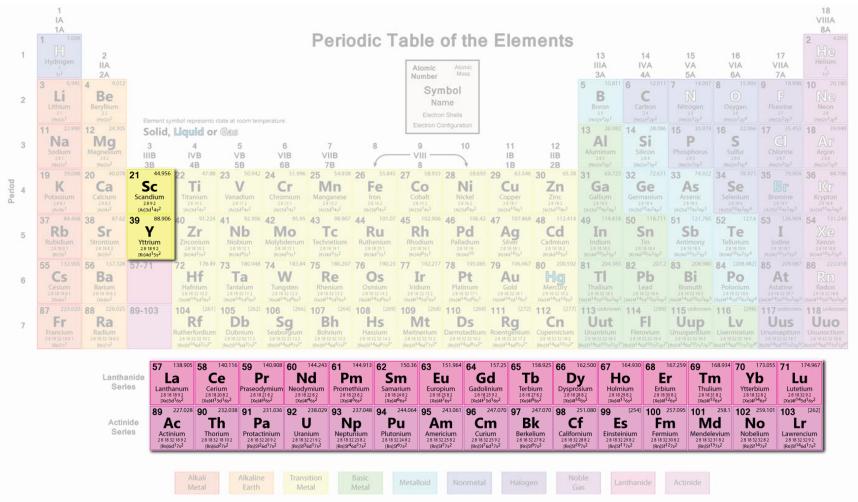
Rare Earth Elements


New Value Streams for Coal, New Products for Appalachia

> Thomas Tarka, P. E. Senior Engineer

Thomas.Tarka@netl.doe.gov


412-386-5434

What are Rare Earth Elements (REEs)?

Average total crustal concentration = 184 ppm *Wedephol, 1995

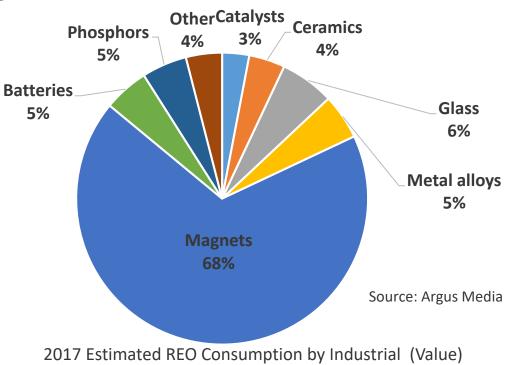
© 2015 Todd Helmenstine sciencenotes.org

What are Rare Earth Elements Used For?

21 44.956 SC Scandium 2892 [Ar]3d ¹ 4s ²	57 138.905 La Lanthanum 28 18 18 92 [Xe]5d ¹ 6s ²	58 140.116 Ce Cerium 28 18 20 8 2 [Xe]4f ¹ 5d ¹ 6s ²	59 140.908 Pr Praseodymium 28182182 (Xe)4f ³ 6s ²	60 144.243 Nd Neodymium 28182282 [Xe]4f ⁴ 65 ²	61 144.913 Pm Promethium 28 18 23 82 [Xe]44 ⁵ 65 ²	62 150.36 Sm 28 18 24 82 [Xe]41 ⁶ 6s ²	63 151.964 Eu Europium 28182582 [Xe]4f ⁷ 65 ²	64 157.25 Gd Gadolinium 28182592 [Xe]44 ⁷ 5d ¹ 6s ²	65 158.925 Tb Terbium 28 18 27 8 2 [Xe]449652	66 162.500 Dy Dysprosium 28 18 28 82 [Xe]4f ¹⁰ 6s ²	67 164.930 HO Holmium 28 18 29 82 [Xe]4f ¹¹ 6s ²	68 167.259 Er Erbium 28 18 30 8 2 [Xe]4r ¹² 6s ²	69 168.934 Tm Thulium 28 18 31 82 [Xe]4f ¹³ 6s ²	70 173.055 Yb Ytterbium 28183282 [Xe]4f ¹⁴ 6s ²	71 174.967 Lu Lutetium 28183292 [Xe]4f ¹⁴ 5d ¹ 6s ²
39 88.906 Y Yttrium 281892 [Kr]4d ¹ 5s ²	89 227.028 Acc Actinium 28 18 32 18 9 2 [Rn]6d ¹ 7s ²	90 232.038 Th Thorium 28 18 32 18 10 2 [Rn]6d ² 7s ²	91 231.036 Pa Protactinium 2818322092 [Rn]5f ² 6d ¹ 7s ²	92 238.029 U Uranium 28 18 32 21 9 2 [Rn]5f ³ 6d ¹ 7s ²	93 237.048 Np Neptunium 2818322382 [RnJSf ⁴ 6d ¹ 7s ²	94 244.064 Pu Plutonium 28 18 32 24 82 [Rn]5f ⁶ 7s ²	95 243.061 Am 2818322582 (Rn)5f ⁷ 7s ²	96 247.070 Cm 2818 32 25 9 2 [Rn]5f ⁷ 6d ¹ 7s ²	97 247.070 Bk Berkelium 2818322782 [Rn]5f ⁹ 7s ²	98 251.080 Cf Californium 2818322882 [Rn]5f ¹⁰ 7s ²	99 [254] Es Einsteinium 2818322982 [Rnj5f ¹¹ 7s ²	100 257.095 Fm Fermium 2818323082 [Rnj5f ¹² 7s ²	101 258.1 Md Mendelevium 2818323182 [Rn]5f ¹³ 7s ²	102 259.101 No Nobelium 2818 32 32 82 [Rn]5f ¹⁴ 7s ²	103 [262] Lr Lawrencium 28 18 32 32 9 2 [Rn]5f ¹⁴ 6d ¹ 7s ²

Average total crustal concentration = 184 ppm

*Wedephol, 1995



Rare Earth Elements Market

- Annual global market ~\$5 billion in 2015
 - U.S. consumes $\sim 11\%$, by volume
 - Almost all REEs are imported

• Majority of REEs imported as part of finished goods, not raw materials

- US imported <u>\$1.2 trillion</u> worth of REE-containing finished goods in 2017
- Electronic equipment imports : ~\$357 billion in 2017 (14.8% of total)
- <u>Phone devices (e.g. iPhone)</u> almost a <u>third of that at \$113 billion</u>
- Cellular phone can contain as many as 16 different REEs
- Market remains complicated
 - Risks of substitution
 - Current oversupply
 - All global enrichment and processing is done in China

REE from Coal: The Challenge

Where do we get it? and What do we produce?

Low Concentration in Coal Feedstocks

- Ranges from parts per billion (ppb) in AMD to ~1,500 parts per million (ppm) in certain ashes
- Global REE ores in current use range from 0.5 wt% (5,000 ppm) to 50wt% (500,000 ppm) with major deposits generally near 8wt%
- Currently No Domestic Supply Chain
 - No clear domestic off-take except for "saleable" (>90+%) REO or "REO baskets"
 - Creates uncertainty as to what concentration domestic processes should target

• Very Broad Problem

- Almost too many coal and related feedstocks to target: which is best?
- Are REE the product or co-product?
- Each coal-related feedstock is different, even within same category

CARBONACEOUS SHALE

SANDSTONE Core Sample (above seam)

(below seam

Overburden

Core Sample

(below seam)

REDSTONE SHALE

Coal Overburden

COAL

REE from Coal: A Unique Opportunity

Importance to the Fossil Energy and DOE Mission

- National Security
 - 5% of total domestic demand is deemed "critical" by the Department of Defense (DoD)
 - Required for numerous critical industries (energy, manufacturing, etc.)
 - Necessary for numerous clean energy technologies which have been deemed a national priority
- Power the U.S. Economy and keep electricity affordable:
 - Additional value streams make coal more cost competitive & keep electricity prices low
 - Drives U.S. coal competitiveness in international markets, driving exports
 - Creates or maintains jobs in economically hard hit regions, such as Appalachia
 - Provides an important new domestic resource, allowing more manufacturing to locate in the U.S.
- Environmental Stewardship
 - Opportunity for remediation, and reducing waste streams from coal production & use
 - Beneficiated coal will burn more efficiently, creating less emissions
 - Produce REEs with a dramatically lower environmental footprint than overseas

NETL's REE Strategy

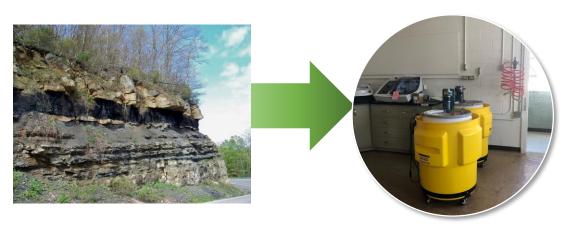
How We are Approaching the Problem

- Understanding the "Where" and "How" (Characterization)
 - Driving the understanding of how REEs occur in coal and by-products
 - Developing the technologies needed for prospecting and new production means
- "Cheap" and Environmentally Benign Production (Separations)
 - Producing ore-quality and greater REE from coal and related materials
 - Combining processes for further efficiency and enrichment
 - Maturing promising transformational separations technologies and continuing to push the envelope
- Smarter, Not Harder (CFD & Systems Analysis)
 - Developing the cutting edge CFD models to help drive commercialization and scale up
 - Identifying process bottlenecks, research targets, and market opportunities through systems analysis
- Driving Innovation, Unlocking the REE Potential of Coal
 - Developing the tools for REE prospecting in coal basins
 - Identifying the best resources for exploitation be it fly ash with high Ca content, underclays, or raw lignite

Recent Successes for Appalachia

Maturing Technologies to Commercialization

Acid Mine Drainage (AMD) Cleanup


- Direct water conditioning to remove over 85% of REE down to parts per trillion (ppt)
- Creating <u>high purity (96wt%) REE products</u> from AMD sludge & treatment solids
- Potential to extract other high value minerals: Cobalt, Alumina, and more

Processing Coal Waste and Underclays

• Low impact process removes easily accessible REE (up to 33% of total)

Image from https://www.flickr.com/photos/piedmont_fossil/5710636433

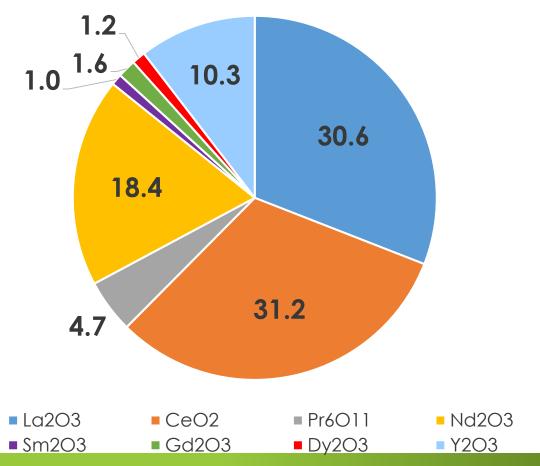
• Demonstrated successes with Appalachian clays

Enabling REE Recovery at the Power Plant

• New invention leverages existing pollution control technologies to enhance REE extractability from ash

Immobilized amine/ amine sorbent

Thanks for your Attention!


Rare Earth Element Usage

Global Rare Earth Oxide (REO) Usage from 2005-2015

Most used REOs were:

- Cerium Oxide (32%)
 - Catalyst related products and glass polishing powders and additives
- Lanthanum Oxide (31%)
 - Catalyst related products and glass polishing powders and additives
- Neodymium Oxide (18%)
 - Permanent magnets
- Yttrium Oxide (10%)
 - Ceramics, pigments and glazes, and glass polishing and powder additives
- Praseodymium Oxide (5%)
 - Permanent magnets
- Global consumption of LREOs increased at a CAGR OF 2.8%, while global consumption of HREOs increased at a CAGR of 1.5%

Average Percentage Consumption from 2005-2015

